The inorganic carbon dynamics and the CO2 flux of estuarine system are strongly influenced by the productivity and nutrient regime of water. This study provides full seasonal coverage of assessment of the physicochemical variables of Mahanadi estuary, mainly focusing on the carbonate system through the measurement of pH, Total Alkalinity (TA), Dissolved Inorganic Carbon (DIC), both aqueous and air fCO 2, Dissolved Oxygen (DO) and chlorophyll a (chl a). The relationship of TA and DIC were found conservative throughout the study period. The estuary was found to be over-saturated with CO2 and acted as a net source. However, the magnitude of flux varied from season to season with a range between -8.14 to 8.09 μmol m-2 h-1 indicating ephemeral sink phase in the estuary. The air-water CO2 flux was primarily governed by fCO2 (water) although other factors such as temperature, pH, salinity, total alkalinity, wind speed and fCO2 (air) noticeably affected CO2 flux. A strong positive correlation was observed between temperature and inorganic nutrients during the study period. The study of net ecosystem metabolism justifies the heterotrophic nature of Mahanadi estuarine system.
Keywords: Estuary; Air-water CO2 flux; Total alkalinity; Temperature; Salinity; Net ecosystem metabolism
Published on: Jan 19, 2017 Pages: 5-12
Full Text PDF
Full Text HTML
DOI: 10.17352/ams.000002
CrossMark
Publons
Harvard Library HOLLIS
Search IT
Semantic Scholar
Get Citation
Base Search
Scilit
OAI-PMH
ResearchGate
Academic Microsoft
GrowKudos
Universite de Paris
UW Libraries
SJSU King Library
SJSU King Library
NUS Library
McGill
DET KGL BIBLiOTEK
JCU Discovery
Universidad De Lima
WorldCat
VU on WorldCat
PTZ: We're glad you're here. Please click "create a new query" if you are a new visitor to our website and need further information from us.
If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."