ISSN: 2692-4765

Annals of Systems Biology

Research Article       Open Access      Peer-Reviewed

Analysis and Control of Antibiotic Dynamic Models

Lakshmi N Sridhar*

Chemical Engineering Department, University of Puerto Rico, Mayaguez, PR 00681, USA

Author and article information

*Corresponding author: Lakshmi N Sridhar, Chemical Engineering Department, University of Puerto Rico, Mayaguez, PR 00681, USA, E-mail: [email protected]
Received: 18 July, 2025 | Accepted: 14 August, 2025 | Published: 16 August, 2025
Keywords: Bifurcation; Optimization; Control; Antibiotic

Cite this as

Sridhar LN. Analysis and Control of Antibiotic Dynamic Models. Ann Syst Biol. 2025;8(1):012-018. Available from: 10.17352/asb.000027

Copyright License

© 2025 Sridhar LN. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Many infections are treated using antibiotics. The dynamics of treatment involving antibiotics are extremely nonlinear. Bifurcation analysis is a powerful mathematical tool used to deal with the nonlinear dynamics of any process. Several factors must be considered, and multiple objectives must be met simultaneously. Bifurcation analysis and multi-objective nonlinear model predictive control (MNLMPC) calculations are performed on two dynamic models involving antibiotics. The MATLAB program MATCONT was used to perform the bifurcation analysis. The MNLMPC calculations were performed using the optimization language PYOMO in conjunction with the state-of-the-art global optimization solvers IPOPT and BARON. The bifurcation analysis revealed the existence of branch points in both models. The branch points (which cause multiple steady-state solutions from a singular point) are very beneficial because they enable the Multiobjective nonlinear model predictive control calculations to converge to the Utopia point (the best possible solution) in the models. It is proven (with computational validation) that the branch points were caused because of the existence of two distinct separable functions in one of the equations in each dynamic model. A theorem was developed to demonstrate this fact for any dynamic model.

1. Background

The complex dynamics of the treatment of afflictions using antibiotics have triggered a lot of research during the last few decades. Bonhoef, et al. [1] evaluated treatment protocols to prevent antibiotic resistance. Austin and Anderson [2] conducted studies of antibiotic resistance within the patient, hospitals, and the community using simple mathematical models. Lipstich, et al. [3] studied the epidemiology of antibiotic resistance in hospitals. Weinstein, et al. [4] researched the spread of antibiotic-resistant pathogens in hospitals with mathematical models as tools for control. Bergstrom, et al. [5] developed an ecological theory that suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals. Webb, et al. [6] developed a model of antibiotic-resistant bacterial epidemics in hospitals. Alavez-Ramirez, et al. [7] studied the within-host population dynamics of antibiotic-resistant M. Tuberculosis. Boldin, et al. [8] investigated the effects of barrier precautions and topical antibiotics on nosocomial bacterial transmission using multi-compartment models. D’Agata, et al. [9] modelled antibiotic resistance in hospitals and studied the impact of minimizing treatment duration. Massad, et al. [10] developed an optimization model for antibiotic use. Hellweger, et al. [11] developed a simple model of tetracycline antibiotic resistance in the aquatic environment. Martinez, et al. [12] studied the environmental pollution by antibiotic resistance genes, and Liu, et al. [13] developed a competitive model in a chemostat with nutrient recycling and antibiotic treatment. Bootsma, et al. [14] studied various models of non-inherited antibiotic resistance, and Esteva, et al. [15] developed mathematical models on bacterial resistance to multiple antibiotics caused by spontaneous mutations. Ibarguen-Mondragón, et al. [16] performed mathematical modelling of bacterial resistance to antibiotics by mutations and plasmids. Cen, et al. [17] performed bifurcation analysis of a mathematical model of antibiotic resistance in hospitals. Mena, et al. [18] investigated the random perturbations in a mathematical model of bacterial resistance, performing analysis and optimal control. This work aims to perform bifurcation analysis and multiobjective nonlinear control (MNLMPC) studies in two models involving antibiotics, which are discussed in Mena, et al. [18] (model 1) and Cen, et al. [17] (model 2). The paper is organized as follows. First, the model equations are presented, followed by a discussion of the numerical techniques involving bifurcation analysis and Multiobjective Nonlinear Model Predictive Control (MNLMPC). The results are then presented, followed by the discussion and conclusions. The integration of bifurcation analysis and dynamic optimization is the novelty of this research.

2. Model description

Model 1 Mena, et al. [18]

The model equations are

d(sval) dt = β s sval(1svalrval)αsval μ s sval d(rval) dt = β r rval(1svalrval)+(1η)qαsval μ r rval      (1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGdaWcaaGcbaqcLbsacaWGKbGaaiikaiaadohacaWG2bGaamyyaiaadYgacaGGPaaakeaajugibiaadsgacaWG0baaaiabg2da9iabek7aILqbaoaaBaaaleaajugibiaadohaaSqabaqcLbsaqaaaaaaaaaWdbiaadohacaWG2bGaamyyaiaadYgacaGGOaGaaGymaiabgkHiTiaadohacaWG2bGaamyyaiaadYgacqGHsislcaWGYbGaamODaiaadggacaWGSbGaaiykaiabgkHiTiabeg7aHjaadohacaWG2bGaamyyaiaadYgacqGHsislcqaH8oqBjuaGdaWgaaWcbaqcLbsacaWGZbaaleqaaKqzGeGaam4CaiaadAhacaWGHbGaamiBaaGcbaqcfa4damaalaaakeaajugibiaadsgacaGGOaGaamOCaiaadAhacaWGHbGaamiBaiaacMcaaOqaaKqzGeGaamizaiaadshaaaGaeyypa0JaeqOSdiwcfa4aaSbaaSqaaKqzGeGaamOCaaWcbeaajugibiaadkhapeGaamODaiaadggacaWGSbGaaiikaiaaigdacqGHsislcaWGZbGaamODaiaadggacaWGSbGaeyOeI0IaamOCaiaadAhacaWGHbGaamiBaiaacMcacqGHRaWkcaGGOaGaaGymaiabgkHiTiabeE7aOjaacMcacaWGXbGaeqySdeMaam4CaiaadAhacaWGHbGaamiBaiabgkHiTiabeY7aTLqbaoaaBaaaleaajugibiaadkhaaSqabaqcLbsacaWGYbGaamODaiaadggacaWGSbGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqGPaaaaaa@9E04@

sval and rval denote the number of sensitive and resistant bacteria population to antibiotics, respectively. The base values of the parameters are

β s =0.4; β r =0.1; μ s =0.2; μ s =0.5;α=0.1204;q=0.3992;η=0.5; MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabek7aILqbaoaaBaaaleaajugibiaadohaaSqabaqcLbsacqGH9aqpcaaIWaGaaiOlaiaaisdacaGG7aGaeqOSdiwcfa4aaSbaaSqaaKqzGeGaamOCaaWcbeaajugibiabg2da9iaaicdacaGGUaGaaGymaiaacUdacqaH8oqBjuaGdaWgaaWcbaqcLbsacaWGZbaaleqaaKqzGeGaeyypa0JaaGimaiaac6cacaaIYaGaai4oaiabeY7aTLqbaoaaBaaaleaajugibiaadohaaSqabaqcLbsacqGH9aqpcaaIWaGaaiOlaiaaiwdacaGG7aGaeqySdeMaeyypa0JaaGimaiaac6cacaaIXaGaaGOmaiaaicdacaaI0aGaai4oaiaadghacqGH9aqpcaaIWaGaaiOlaiaaiodacaaI5aGaaGyoaiaaikdacaGG7aGaeq4TdGMaeyypa0JaaGimaiaac6cacaaI1aGaai4oaaaa@6CF3@

Model 2 Cen, et al. [17]

d(sval) dt =mμ+βsval(xval)( τ 1 + τ 2 +γ+μ)sval+σβc(sval)(rval) d(rval) dt =βxval(1c)rval( τ 2 +γ+μ)rvalσβc(sval)(rval) d(xval) dt =(1m)μ+( τ 1 + τ 2 +γ+μ)sval+( τ 2 +γ)rvalβsval(xval)      (2) βxval(1c)rvalμ(xval) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGdaWcaaGcbaqcLbsacaWGKbGaaiikaiaadohacaWG2bGaamyyaiaadYgacaGGPaaakeaajugibiaadsgacaWG0baaaiabg2da9iaad2gacqaH8oqBcqGHRaWkcqaHYoGycaWGZbGaamODaiaadggacaWGSbGaaiikaiaadIhacaWG2bGaamyyaiaadYgacaGGPaGaeyOeI0Iaaiikaiabes8a0LqbaoaaBaaaleaajugibiaaigdaaSqabaqcLbsacqGHRaWkcqaHepaDjuaGdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaey4kaSIaeq4SdCMaey4kaSIaeqiVd0MaaiykaiaadohacaWG2bGaamyyaiaadYgacqGHRaWkcqaHdpWCcqaHYoGycaWGJbGaaiikaiaadohacaWG2bGaamyyaiaadYgacaGGPaGaaiikaiaadkhacaWG2bGaamyyaiaadYgacaGGPaaakabaaaaaaaaapeqaaKqba+aadaWcaaGcbaqcLbsacaWGKbGaaiikaiaadkhacaWG2bGaamyyaiaadYgacaGGPaaakeaajugibiaadsgacaWG0baaaiabg2da9iabek7aIjaadIhacaWG2bGaamyyaiaadYgacaGGOaGaaGymaiabgkHiTiaadogacaGGPaGaamOCaiaadAhacaWGHbGaamiBaiabgkHiTiaacIcacqaHepaDjuaGdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaey4kaSIaeq4SdCMaey4kaSIaeqiVd0MaaiykaiaadkhacaWG2bGaamyyaiaadYgacqGHsislcqaHdpWCcqaHYoGycaWGJbGaaiikaiaadohacaWG2bGaamyyaiaadYgacaGGPaGaaiikaiaadkhacaWG2bGaamyyaiaadYgacaGGPaaakeaajuaGdaWcaaGcbaqcLbsacaWGKbGaaiikaiaadIhacaWG2bGaamyyaiaadYgacaGGPaaakeaajugibiaadsgacaWG0baaaiabg2da9iaacIcacaaIXaGaeyOeI0IaamyBaiaacMcacqaH8oqBcqGHRaWkcaGGOaGaeqiXdqxcfa4aaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiabgUcaRiabes8a0LqbaoaaBaaaleaajugibiaaikdaaSqabaqcLbsacqGHRaWkcqaHZoWzcqGHRaWkcqaH8oqBcaGGPaGaam4CaiaadAhacaWGHbGaamiBaiabgUcaRiaacIcacqaHepaDjuaGdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaey4kaSIaeq4SdCMaaiykaiaadkhacaWG2bGaamyyaiaadYgacqGHsislcqaHYoGycaWGZbGaamODaiaadggacaWGSbGaaiikaiaadIhacaWG2bGaamyyaiaadYgacaGGPaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabkdacaqGPaaakeaajugibiabgkHiTiabek7aIjaadIhacaWG2bGaamyyaiaadYgacaGGOaGaaGymaiabgkHiTiaadogacaGGPaGaamOCaiaadAhacaWGHbGaamiBaiabgkHiTiabeY7aTjaacIcacaWG4bGaamODaiaadggacaWGSbGaaiykaaaaaa@0466@

The model considers two strains of a bacterial species having two antimicrobial agents. Individuals may have strains of these bacteria that are either sensitive (sval) or resistant (rval) to the first drug, or they may be free of these bacteria (xval). . The base values of the parameters are

m=0.75;μ=0.1;β=1; τ 1 =0.35; τ 2 =0.1; γ=1/30;σ=0.25;c=0.05; MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaad2gacqGH9aqpcaaIWaGaaiOlaiaaiEdacaaI1aGaai4oaiabeY7aTjabg2da9iaaicdacaGGUaGaaGymaiaacUdacqaHYoGycqGH9aqpcaaIXaGaai4oaiabes8a0LqbaoaaBaaaleaajugibiaaigdaaSqabaqcLbsacqGH9aqpcaaIWaGaaiOlaiaaiodacaaI1aGaai4oaiabes8a0LqbaoaaBaaaleaajugibiaaikdaaSqabaqcLbsacqGH9aqpcaaIWaGaaiOlaiaaigdacaGG7aGaaeiiaiabeo7aNjabg2da9iaaigdacaGGVaGaaG4maiaaicdacaGG7aGaeq4WdmNaeyypa0JaaGimaiaac6cacaaIYaGaaGynaiaacUdacaWGJbGaeyypa0JaaGimaiaac6cacaaIWaGaaGynaiaacUdaaaa@6A5C@

3. Bifurcation analysis

The MATLAB software MATCONT is used to perform the bifurcation calculations. Bifurcation analysis deals with multiple steady-states and limit cycles. Multiple steady states occur because of the existence of branch and limit points. Hopf bifurcation points cause limit cycles. A commonly used MATLAB program that locates limit points, branch points, and Hopf bifurcation points is MATCONT [19,20]. This program detects Limit Points (LP), Branch Points (BP), and Hopf bifurcation points (H) for an ODE system

dx dt =f(x,α)    (3) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaOqaaKqzGeGaamizaiaadIhaaOqaaKqzGeGaamizaiaadshaaaGaeyypa0JaamOzaiaacIcacaWG4bGaaiilaiabeg7aHjaacMcacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGPaaaaa@46B9@

x R n MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4bGaeyicI4SaamOuaKqbaoaaCaaaleqabaqcLbsacaWGUbaaaaaa@3C17@ Let the bifurcation parameter be α. Since the gradient is orthogonal to the tangent vector,

The tangent plane at any point z=[ z 1 , z 2 , z 3 , z 4 ,.... z n+1 ] MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiabg2da9iaacUfacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadQhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamOEamaaBaaaleaacaaIZaaabeaakiaacYcacaWG6bWaaSbaaSqaaiaaisdaaeqaaOGaaiilaiaac6cacaGGUaGaaiOlaiaac6cacaWG6bWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaac2faaaa@4AAB@ must satisfy

Az=0      (4) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbbGaamOEaiabg2da9iaaicdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeinaiaabMcaaaa@3FE6@

Where A is

A=[f/x|f/α]      (5) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbbGaeyypa0Jaai4waiabgkGi2kaadAgacaGGVaGaeyOaIyRaamiEaiaacYhacqGHciITcaWGMbGaai4laiabgkGi2kabeg7aHjaac2facaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeynaiaabMcaaaa@4C5E@

where f/x MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHciITcaWGMbGaai4laiabgkGi2kaadIhaaaa@3BE8@ is the Jacobian matrix. For both limit and branch points, the matrix [f/x] MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGBbGaeyOaIyRaamOzaiaac+cacqGHciITcaWG4bGaaiyxaaaa@3DA9@ must be singular. The n+1th component of the tangent vector z n+1 =0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG6bWcdaWgaaqaaKqzGdGaamOBaiabgUcaRiaaigdaaSqabaqcLbsacqGH9aqpcaaIWaaaaa@3DE4@ for a limit point (LP) and for a branch point (BP) the matrix [ A z T ] MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaKqzGeabaeqakeaajugibiaadgeaaOqaaKqzGeGaamOEaKqbaoaaCaaaleqabaqcLboacaWGubaaaaaakiaawUfacaGLDbaaaaa@3EEC@ must be singular. At a Hopf bifurcation point,

det(2 f x (x,α)@ I n )=0       (6) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaciizaiaacwgacaGG0bGaaiikaiaaikdacaWGMbqcfa4aaSbaaSqaaKqzGeGaamiEaaWcbeaajugibiaacIcacaWG4bGaaiilaiabeg7aHjaacMcacaGGabGaamysaKqbaoaaBaaaleaajugibiaad6gaaSqabaqcLbsacaGGPaGaeyypa0JaaGimaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOnaiaabMcaaaa@5073@

@ indicates the bialternate product while In is the n-square identity matrix. Hopf bifurcations cause limit cycles and should be eliminated because limit cycles make optimization and control tasks very difficult. More details can be found in Kuznetsov [21,22] and Govaerts [23].

Hopf bifurcations cause unwanted oscillatory behavior and limit cycles. The tanh activation function (where a control value u is replaced by) (utanhu/ε) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOaGaamyDaiGacshacaGGHbGaaiOBaiaacIgacaWG1bGaai4laiabew7aLjaacMcaaaa@3FE6@ is commonly used in neural nets [24]; Kamalov, et al. [25] and Szandała 2020 [26] and optimal control problems [27] to eliminate spikes in the optimal control profile. Hopf bifurcation points cause oscillatory behavior. Oscillations are similar to spikes, and the results in Sridhar [24] demonstrate that the tanh factor also eliminates the Hopf bifurcation by preventing the occurrence of oscillations. Sridhar [28] explained with several examples how the activation factor involving the tanh function successfully eliminates the limit cycle causing Hopf bifurcation points. This was because the tanh function increases the time period of the oscillatory behavior, which occurs in the form of a limit cycle caused by Hopf bifurcations.

4. Multiobjective Nonlinear Model Predictive Control (MNLMPC)

Flores Tlacuahuaz, et al. [29] developed a Multiobjective Nonlinear Model Predictive Control (MNLMPC) method that is rigorous and does not involve weighting functions or additional constraints. This procedure is used for performing the MNLMPC calculations Here t i=0 t i = t f q j ( t i ) ( j=1, 2..n ) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaWGXbWaaSbaaSqaaiaadQgaaeqaaOGaaiikaiaadshadaWgaaWcbaGaamyAaaqabaGccaGGPaaaleaacaWG0bWaaSbaaWqaaiaadMgacqGH9aqpcaaIWaaabeaaaSqaaiaadshadaWgaaadbaGaamyAaaqabaWccqGH9aqpcaWG0bWaaSbaaWqaaiaadAgaaeqaaaqdcqGHris5aOWaaeWaaeaacaqGQbGaeyypa0JaaeymaiaacYcacaqGGaGaaeOmaiaac6cacaGGUaGaaeOBaaGaayjkaiaawMcaaaaa@5185@ represents the variables that need to be minimized/maximized simultaneously for a problem involving a set of ODE

dx dt =F(x,u)      (7) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaamizaiaadIhaaeaacaWGKbGaamiDaaaacqGH9aqpcaWGgbGaaiikaiaadIhacaGGSaGaamyDaiaacMcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4naiaabMcaaaa@47C2@

tf being the final time value, and n the total number of objective variables and .u the control parameter. This MNLMPC procedure first solves the single objective optimal control problem independently optimizing each of the variables t i=0 t i = t f q j ( t i ) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaWGXbWaaSbaaSqaaiaadQgaaeqaaOGaaiikaiaadshadaWgaaWcbaGaamyAaaqabaGccaGGPaaaleaacaWG0bWaaSbaaWqaaiaadMgacqGH9aqpcaaIWaaabeaaaSqaaiaadshadaWgaaadbaGaamyAaaqabaWccqGH9aqpcaWG0bWaaSbaaWqaaiaadAgaaeqaaaqdcqGHris5aaaa@48EE@ individually. The minimization/maximization of t i=0 t i = t f q j ( t i ) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaWGXbWaaSbaaSqaaiaadQgaaeqaaOGaaiikaiaadshadaWgaaWcbaGaamyAaaqabaGccaGGPaaaleaacaWG0bWaaSbaaWqaaiaadMgacqGH9aqpcaaIWaaabeaaaSqaaiaadshadaWgaaadbaGaamyAaaqabaWccqGH9aqpcaWG0bWaaSbaaWqaaiaadAgaaeqaaaqdcqGHris5aaaa@48EE@ will lead to the values q j * MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaDaaaleaacaWGQbaabaGaaiOkaaaaaaa@3AC6@ . Then the optimization problem that will be solved is

min( j=1 n ( t i=0 t i = t f q j ( t i ) q j * ) ) 2        (8) subjectto dx dt =F(x,u); MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaciyBaiaacMgacaGGUbGaaiikamaaqahabaGaaiikamaaqahabaGaamyCamaaBaaaleaacaWGQbaabeaakiaacIcacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaiykaaWcbaGaamiDamaaBaaameaacaWGPbGaeyypa0JaaGimaaqabaaaleaacaWG0bWaaSbaaWqaaiaadMgaaeqaaSGaeyypa0JaamiDamaaBaaameaacaWGMbaabeaaa0GaeyyeIuoakiabgkHiTiaadghadaqhaaWcbaGaamOAaaqaaiaacQcaaaGccaGGPaGaaiykamaaCaaaleqabaGaaGOmaaaaaeaacaWGQbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoakiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeioaiaabMcaaeaacaWGZbGaamyDaiaadkgacaWGQbGaamyzaiaadogacaWG0bGaaGjbVlaadshacaWGVbGaaGjbVlaaysW7daWcaaqaaiaadsgacaWG4baabaGaamizaiaadshaaaGaeyypa0JaamOraiaacIcacaWG4bGaaiilaiaadwhacaGGPaGaai4oaaaaaa@774D@

This will provide the values of u at various times. The first obtained control value of u is implemented and the rest are discarded. This procedure is repeated until the implemented and the first obtained control values are the same or if the Utopia point where ( t i=0 t i = t f q j ( t i ) = q j * for all j) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcadaaeWbqaaiaadghadaWgaaWcbaGaamOAaaqabaGccaGGOaGaamiDamaaBaaaleaacaWGPbaabeaakiaacMcaaSqaaiaadshadaWgaaadbaGaamyAaiabg2da9iaaicdaaeqaaaWcbaGaamiDamaaBaaameaacaWGPbaabeaaliabg2da9iaadshadaWgaaadbaGaamOzaaqabaaaniabggHiLdGccqGH9aqpcaWGXbWaa0baaSqaaiaadQgaaeaacaGGQaaaaOGaaeOzaiaab+gacaqGYbGaaeiiaiaabggacaqGSbGaaeiBaiaabccacaqGQbGaaiykaaaa@5616@ is obtained.

Pyomo [30] is used for these calculations. Here, the differential equations are converted to a Nonlinear Program (NLP) using the orthogonal collocation method The NLP is solved using IPOPT [31] and confirmed as a global solution with BARON [32].

The steps of the algorithm are as follows

  1. Optimize  t i=0 t i = t f q j ( t i ) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaWGXbWaaSbaaSqaaiaadQgaaeqaaOGaaiikaiaadshadaWgaaWcbaGaamyAaaqabaGccaGGPaaaleaacaWG0bWaaSbaaWqaaiaadMgacqGH9aqpcaaIWaaabeaaaSqaaiaadshadaWgaaadbaGaamyAaaqabaWccqGH9aqpcaWG0bWaaSbaaWqaaiaadAgaaeqaaaqdcqGHris5aaaa@48EE@ and obtain  q j * MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaDaaaleaacaWGQbaabaGaaiOkaaaaaaa@3AC6@ at various time intervals ti. The subscript i is the index for each time step.
  2. Minimize ( j=1 n ( t i=0 t i = t f q j ( t i ) q j * ) ) 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcadaaeWbqaaiaacIcadaaeWbqaaiaadghadaWgaaWcbaGaamOAaaqabaGccaGGOaGaamiDamaaBaaaleaacaWGPbaabeaakiaacMcaaSqaaiaadshadaWgaaadbaGaamyAaiabg2da9iaaicdaaeqaaaWcbaGaamiDamaaBaaameaacaWGPbaabeaaliabg2da9iaadshadaWgaaadbaGaamOzaaqabaaaniabggHiLdGccqGHsislcaWGXbWaa0baaSqaaiaadQgaaeaacaGGQaaaaOGaaiykaiaacMcadaahaaWcbeqaaiaaikdaaaaabaGaamOAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaaaa@5654@ and get the control values for various times.
  3. Implement the first obtained control values
  4. Repeat steps 1 to 3 until there is an insignificant difference between the implemented and the first obtained value of the control variables or if the Utopia point is achieved. The Utopia point is when  t i=0 t i = t f q j ( t i ) = q j * MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqahabaGaamyCamaaBaaaleaacaWGQbaabeaakiaacIcacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaiykaaWcbaGaamiDamaaBaaameaacaWGPbGaeyypa0JaaGimaaqabaaaleaacaWG0bWaaSbaaWqaaiaadMgaaeqaaSGaeyypa0JaamiDamaaBaaameaacaWGMbaabeaaa0GaeyyeIuoakiabg2da9iaadghadaqhaaWcbaGaamOAaaqaaiaacQcaaaaaaa@4CEE@ for all j.

Sridhar [33] proved that the MNLMPC calculations to converge to the Utopia solution when the bifurcation analysis revealed the presence of limit and branch points. This was done by imposing the singularity condition on the co-state equation [34]. If the minimization of q1 lead to the value q 1 * MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaDaaaleaacaaIXaaabaGaaiOkaaaaaaa@3A92@ and the minimization of q2 lead to the value q 1 * MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaDaaaleaacaaIXaaabaGaaiOkaaaaaaa@3A92@ The MNLPMC calculations will minimize the function ( q 1 q 1 * ) 2 + ( q 2 q 2 * ) 2 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadghadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGXbWaa0baaSqaaiaaigdaaeaacaGGQaaaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaacIcacaWGXbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyCamaaDaaaleaacaaIYaaabaGaaiOkaaaakiaacMcadaahaaWcbeqaaiaaikdaaaaaaa@484C@ . The multiobjective optimal control problem is

min ( q 1 q 1 * ) 2 + ( q 2 q 2 * ) 2 subjectto dx dt =F(x,u)      (9) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGac2gacaGGPbGaaiOBaiaaywW7caGGOaGaamyCamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadghadaqhaaWcbaGaaGymaaqaaiaacQcaaaGccaGGPaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaiikaiaadghadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGXbWaa0baaSqaaiaaikdaaeaacaGGQaaaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiaadohacaWG1bGaamOyaiaadQgacaWGLbGaam4yaiaadshacaaMe8UaamiDaiaad+gacaaMe8UaaGjbVpaalaaabaGaamizaiaadIhaaeaacaWGKbGaamiDaaaacqGH9aqpcaWGgbGaaiikaiaadIhacaGGSaGaamyDaiaacMcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeyoaiaabMcaaaa@699B@

Differentiating the objective function results in

d d x i ( ( q 1 q 1 * ) 2 + ( q 2 q 2 * ) 2 )=2( q 1 q 1 * ) d d x i ( q 1 q 1 * )      (10) +2( q 2 q 2 * ) d d x i ( q 2 q 2 * ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGdaWcaaGcbaqcLbsacaWGKbaakeaajugibiaadsgacaWG4bqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaaaaqcLbsacaGGOaGaaiikaiaadghajuaGdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaeyOeI0IaamyCaKqbaoaaDaaaleaajugibiaaigdaaSqaaKqzGeGaaiOkaaaacaGGPaqcfa4aaWbaaSqabeaajugibiaaikdaaaGaey4kaSIaaiikaiaadghajuaGdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaeyOeI0IaamyCaKqbaoaaDaaaleaajugibiaaikdaaSqaaKqzGeGaaiOkaaaacaGGPaqcfa4aaWbaaSqabeaajugibiaaikdaaaGaaiykaiabg2da9iaaikdacaGGOaGaamyCaKqbaoaaBaaaleaajugibiaaigdaaSqabaqcLbsacqGHsislcaWGXbqcfa4aa0baaSqaaKqzGeGaaGymaaWcbaqcLbsacaGGQaaaaiaacMcajuaGdaWcaaGcbaqcLbsacaWGKbaakeaajugibiaadsgacaWG4bqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaaaaqcLbsacaGGOaGaamyCaKqbaoaaBaaaleaajugibiaaigdaaSqabaqcLbsacqGHsislcaWGXbqcfa4aa0baaSqaaKqzGeGaaGymaaWcbaqcLbsacaGGQaaaaiaacMcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabcdacaqGPaaakeaajugibiabgUcaRiaaikdacaGGOaGaamyCaKqbaoaaBaaaleaajugibiaaikdaaSqabaqcLbsacqGHsislcaWGXbqcfa4aa0baaSqaaKqzGeGaaGOmaaWcbaqcLbsacaGGQaaaaiaacMcajuaGdaWcaaGcbaqcLbsacaWGKbaakeaajugibiaadsgacaWG4bqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaaaaqcLbsacaGGOaGaamyCaKqbaoaaBaaaleaajugibiaaikdaaSqabaqcLbsacqGHsislcaWGXbqcfa4aa0baaSqaaKqzGeGaaGOmaaWcbaqcLbsacaGGQaaaaiaacMcaaaaa@99CD@

The Utopia point requires that both ( q 1 q 1 * ) and ( q 2 q 2 * ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadghadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGXbWaa0baaSqaaiaaigdaaeaacaGGQaaaaOGaaiykaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaaiikaiaadghadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGXbWaa0baaSqaaiaaikdaaeaacaGGQaaaaOGaaiykaaaa@498F@ are zero. Hence

d d x i ( ( q 1 q 1 * ) 2 + ( q 2 q 2 * ) 2 )=0      (11) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaaadaWcaaqaaiaadsgaaeaacaWGKbGaamiEamaaBaaaleaacaWGPbaabeaaaaGccaGGOaGaaiikaiaadghadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGXbWaa0baaSqaaiaaigdaaeaacaGGQaaaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaacIcacaWGXbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyCamaaDaaaleaacaaIYaaabaGaaiOkaaaakiaacMcadaahaaWcbeqaaiaaikdaaaGccaGGPaGaeyypa0JaaGimaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeymaiaabMcaaaa@5605@

the optimal control co-state equation [34] is

d dt ( λ i )= d d x i ( ( q 1 q 1 * ) 2 + ( q 2 q 2 * ) 2 ) f x λ i ; λ i ( t f )=0      (12) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaadshaaaGaaiikaiabeU7aSnaaBaaaleaacaWGPbaabeaakiaacMcacqGH9aqpcqGHsisldaWcaaqaaiaadsgaaeaacaWGKbGaamiEamaaBaaaleaacaWGPbaabeaaaaGccaGGOaGaaiikaiaadghadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGXbWaa0baaSqaaiaaigdaaeaacaGGQaaaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaacIcacaWGXbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyCamaaDaaaleaacaaIYaaabaGaaiOkaaaakiaacMcadaahaaWcbeqaaiaaikdaaaGccaGGPaGaeyOeI0IaamOzamaaBaaaleaacaWG4baabeaakiabeU7aSnaaBaaaleaacaWGPbaabeaakiaacUdacaaMf8Uaeq4UdW2aaSbaaSqaaiaadMgaaeqaaOGaaiikaiaadshadaWgaaWcbaGaamOzaaqabaGccaGGPaGaeyypa0JaaGimaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeOmaiaabMcaaaa@6D7D@

λi is the Lagrangian multiplier. tf is the final time. The first term in this equation is 0 and hence

d dt ( λ i )= f x λ i ; λ i ( t f )=0     (13) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaOqaaKqzGeGaamizaaGcbaqcLbsacaWGKbGaamiDaaaacaGGOaGaeq4UdWwcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiaacMcacqGH9aqpcqGHsislcaWGMbqcfa4aaSbaaSqaaKqzGeGaamiEaaWcbeaajugibiabeU7aSLqbaoaaBaaaleaajugibiaadMgaaSqabaqcLbsacaGG7aGaeq4UdWwcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiaacIcacaWG0bqcfa4aaSbaaSqaaKqzGeGaamOzaaWcbeaajugibiaacMcacqGH9aqpcaaIWaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabodacaqGPaaaaa@5CC2@

At a limit or a branch point, for the set of ODE dx dt =f(x,u) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaakeaajugibiaadsgacaWG4baakeaajugibiaadsgacaWG0baaaiabg2da9iaadAgacaGGOaGaamiEaiaacYcacaWG1bGaaiykaaaa@4170@ fx is singular. Hence there are two different vectors-values for [λi] where d dt ( λ i )>0 and  d dt ( λ i )<0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaadshaaaGaaiikaiabeU7aSnaaBaaaleaacaWGPbaabeaakiaacMcacqGH+aGpcaaIWaGaaeiiaiaabggacaqGUbGaaeizaiaabccadaWcaaqaaiaadsgaaeaacaWGKbGaamiDaaaacaGGOaGaeq4UdW2aaSbaaSqaaiaadMgaaeqaaOGaaiykaiabgYda8iaaicdaaaa@4D9F@ . In between there is a vector [λi] where d dt ( λ i )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaOqaaKqzGeGaamizaaGcbaqcLbsacaWGKbGaamiDaaaacaGGOaGaeq4UdWwcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiaacMcacqGH9aqpcaaIWaaaaa@422B@ . This, coupled with the boundary condition λ i ( t f )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7oaBjuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqzGeGaaiikaiaadshajuaGdaWgaaWcbaqcLbsacaWGMbaaleqaaKqzGeGaaiykaiabg2da9iaaicdaaaa@41E6@ will lead to [λi] = 0 This makes the problem an unconstrained optimization problem, and the only solution is the Utopia solution.

5. Results

Model 1

The bifurcation analysis (with βs as the bifurcation parameter) revealed a branch point at (sval,rval, β s ) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadohacaWG2bGaamyyaiaadYgacaGGSaGaamOCaiaadAhacaWGHbGaamiBaiaacYcacqaHYoGydaWgaaWcbaGaam4CaaqabaGccaGGPaaaaa@4521@ values of (0, 0, 0.3204).

This is shown in Figure 1a. For the MNLMPC calculations, t i=0 t i = t f rval( t i ) , t i=0 t i = t f η( t i ) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaWGYbGaamODaiaadggacaWGSbGaaiikaiaadshadaWgaaWcbaGaamyAaaqabaGccaGGPaaaleaacaWG0bWaaSbaaWqaaiaadMgacqGH9aqpcaaIWaaabeaaaSqaaiaadshadaWgaaadbaGaamyAaaqabaWccqGH9aqpcaWG0bWaaSbaaWqaaiaadAgaaeqaaaqdcqGHris5aOGaaiilamaaqahabaGaeq4TdGMaaiikaiaadshadaWgaaWcbaGaamyAaaqabaGccaGGPaaaleaacaWG0bWaaSbaaWqaaiaadMgacqGH9aqpcaaIWaaabeaaaSqaaiaadshadaWgaaadbaGaamyAaaqabaWccqGH9aqpcaWG0bWaaSbaaWqaaiaadAgaaeqaaaqdcqGHris5aaaa@5BCF@ were minimized individually and led to values of 0 and 0. η was the control parameter. The multiobjective optimal control problem will involve the minimization of ( t i=0 t i = t f rval( t i ) ) 2 + ( t i=0 t i = t f η( t i ) ) 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaGaamOCaiaadAhacaWGHbGaamiBaiaacIcacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaiykaaWcbaGaamiDamaaBaaameaacaWGPbGaeyypa0JaaGimaaqabaaaleaacaWG0bWaaSbaaWqaaiaadMgaaeqaaSGaeyypa0JaamiDamaaBaaameaacaWGMbaabeaaa0GaeyyeIuoakiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaGGOaWaaabCaeaacqaH3oaAcaGGOaGaamiDamaaBaaaleaacaWGPbaabeaakiaacMcaaSqaaiaadshadaWgaaadbaGaamyAaiabg2da9iaaicdaaeqaaaWcbaGaamiDamaaBaaameaacaWGPbaabeaaliabg2da9iaadshadaWgaaadbaGaamOzaaqabaaaniabggHiLdGccaGGPaWaaWbaaSqabeaacaaIYaaaaaaa@6098@ subject to the equations governing Model 1. This led to a value of zero (the Utopia solution). The MNLMPC control value (η) was 0.6963. Figures 1(b-d). show the various MNLMPC profiles.

Model 2

The bifurcation analysis (with τ2 as the bifurcation parameter) revealed a branch point at (sval,rval,xval, τ 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadohacaWG2bGaamyyaiaadYgacaGGSaGaamOCaiaadAhacaWGHbGaamiBaiaacYcacaWG4bGaamODaiaadggacaWGSbGaaiilaiabes8a0naaBaaaleaacaaIYaaabeaakiaacMcaaaa@4988@ values of (0.242641, 0, 0.757359, 0.583125). This is shown in Figure 2a.

For the MNLMPC calculations, sval(0)=0.6; t i=0 t i = t f rval( t i ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaWGYbGaamODaiaadggacaWGSbGaaiikaiaadshadaWgaaWcbaGaamyAaaqabaGccaGGPaaaleaacaWG0bWaaSbaaWqaaiaadMgacqGH9aqpcaaIWaaabeaaaSqaaiaadshadaWgaaadbaGaamyAaaqabaWccqGH9aqpcaWG0bWaaSbaaWqaaiaadAgaaeqaaaqdcqGHris5aaaa@4A9B@ was minimized and t i=0 t i = t f xval( t i ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaWG4bGaamODaiaadggacaWGSbGaaiikaiaadshadaWgaaWcbaGaamyAaaqabaGccaGGPaaaleaacaWG0bWaaSbaaWqaaiaadMgacqGH9aqpcaaIWaaabeaaaSqaaiaadshadaWgaaadbaGaamyAaaqabaWccqGH9aqpcaWG0bWaaSbaaWqaaiaadAgaaeqaaaqdcqGHris5aaaa@4AA1@ was maximized leading to values of 0 and 2. The multiobjective optimal control problem will involve the minimization of ( t i=0 t i = t f rval( t i ) ) 2 + ( t i=0 t i = t f xval( t i )2 ) 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaGaamOCaiaadAhacaWGHbGaamiBaiaacIcacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaiykaaWcbaGaamiDamaaBaaameaacaWGPbGaeyypa0JaaGimaaqabaaaleaacaWG0bWaaSbaaWqaaiaadMgaaeqaaSGaeyypa0JaamiDamaaBaaameaacaWGMbaabeaaa0GaeyyeIuoakiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaGGOaWaaabCaeaacaWG4bGaamODaiaadggacaWGSbGaaiikaiaadshadaWgaaWcbaGaamyAaaqabaGccaGGPaGaeyOeI0IaaGOmaaWcbaGaamiDamaaBaaameaacaWGPbGaeyypa0JaaGimaaqabaaaleaacaWG0bWaaSbaaWqaaiaadMgaaeqaaSGaeyypa0JaamiDamaaBaaameaacaWGMbaabeaaa0GaeyyeIuoakiaacMcadaahaaWcbeqaaiaaikdaaaaaaa@6464@ and resulted in the Utopia point(0). The MNLMPC control value (τ2) was 0.18248. Figures 2(b-d). show the various MNLMPC profiles. The profile of the control variable (τ2) exhibited a lot of noise, which was remedied using the Savitzky-Golay filter. Both the original and the modified profiles are shown in Figure 2e.

6. Discussion of results

Theorem

If one of the functions in a dynamic system is separable into two distinct functions, a branch point singularity will occur in the system.

Proof

Consider a system of equations

dx dt =f(x,α)     (14) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaamiEaaqaaiaadsgacaWG0baaaiabg2da9iaadAgacaGGOaGaamiEaiaacYcacqaHXoqycaGGPaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabsdacaqGPaaaaa@4864@

x R n MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadkfadaahaaWcbeqaaiaad6gaaaaaaa@3C7E@ . Defining the matrix A as

A=[ f 1 x 1 f 1 x 2 f 1 x 3 f 1 x 4 .......... f 1 x n f 1 α f 2 x 1 f 2 x 2 f 2 x 3 f 2 x 4 .......... f 2 x n f 2 α ........................................................... ........................................................... f n x 1 f n x 2 f n x 3 f n x 4 .......... f n x n f n α ]       (15) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabg2da9maadmaaeaqabeaadaWcaaqaaiabgkGi2kaadAgadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaakiaaywW7daWcaaqaaiabgkGi2kaadAgadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaakiaaywW7daWcaaqaaiabgkGi2kaadAgadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiaaywW7daWcaaqaaiabgkGi2kaadAgadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaisdaaeqaaaaakiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cadaWcaaqaaiabgkGi2kaadAgadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaad6gaaeqaaaaakiaaywW7daWcaaqaaiabgkGi2kaadAgadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcqaHXoqyaaaabaWaaSaaaeaacqGHciITcaWGMbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaGccaaMf8+aaSaaaeaacqGHciITcaWGMbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaGccaaMf8+aaSaaaeaacqGHciITcaWGMbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIZaaabeaaaaGccaaMf8+aaSaaaeaacqGHciITcaWGMbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaI0aaabeaaaaGccaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaWaaSaaaeaacqGHciITcaWGMbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGUbaabeaaaaGccaaMf8+aaSaaaeaacqGHciITcaWGMbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaeqySdegaaaqaaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaaabaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6caaeaadaWcaaqaaiabgkGi2kaadAgadaWgaaWcbaGaamOBaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaakiaaywW7daWcaaqaaiabgkGi2kaadAgadaWgaaWcbaGaamOBaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaakiaaywW7daWcaaqaaiabgkGi2kaadAgadaWgaaWcbaGaamOBaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiaaywW7daWcaaqaaiabgkGi2kaadAgadaWgaaWcbaGaamOBaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaisdaaeqaaaaakiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cadaWcaaqaaiabgkGi2kaadAgadaWgaaWcbaGaamOBaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaad6gaaeqaaaaakiaaywW7daWcaaqaaiabgkGi2kaadAgadaWgaaWcbaGaamOBaaqabaaakeaacqGHciITcqaHXoqyaaaaaiaawUfacaGLDbaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqG1aGaaeykaaaa@3564@

α is the bifurcation parameter. The matrix A can be written in a compact form as

A=[ f p x q .| f p α ]     (16) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabg2da9iaacUfadaWcaaqaaiabgkGi2kaadAgadaWgaaWcbaGaamiCaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadghaaeqaaaaakiaac6cacaGG8bWaaSaaaeaacqGHciITcaWGMbWaaSbaaSqaaiaadchaaeqaaaGcbaGaeyOaIyRaeqySdegaaiaac2facaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeOnaiaabMcaaaa@50E2@

The tangent at any point x; (z=[ z 1 , z 2 , z 3 , z 4 ,.... z n+1 ]) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOaGaamOEaiabg2da9iaacUfacaWG6bqcfa4aaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaacYcacaWG6bqcfa4aaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiaacYcacaWG6bqcfa4aaSbaaSqaaKqzGeGaaG4maaWcbeaajugibiaacYcacaWG6bqcfa4aaSbaaSqaaKqzGeGaaGinaaWcbeaajugibiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaamOEaKqbaoaaBaaaleaajugibiaad6gacqGHRaWkcaaIXaaaleqaaKqzGeGaaiyxaiaacMcaaaa@5727@ must satisfy

Az=0      (17) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbbGaamOEaiabg2da9iaaicdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabEdacaqGPaaaaa@409D@

The matrix { f p x q } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EamaalaaabaGaeyOaIyRaamOzamaaBaaaleaacaWGWbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamyCaaqabaaaaOGaaiyFaaaa@4120@ must be singular at both limit and branch points. The n+1th component of the tangent vector z n+1 =0 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpcaaIWaaaaa@3D8B@ at a limit point (LP) and for a branch point (BP) the matrix B=[ A z T ] MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiabg2da9maadmaaeaqabeaacaWGbbaabaGaamOEamaaCaaaleqabaGaamivaaaaaaGccaGLBbGaayzxaaaaaa@3EA1@ must be singular.

Any tangent at a point y that is defined by (z=[ z 1 , z 2 , z 3 , z 4 ,.... z n+1 ]) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOaGaamOEaiabg2da9iaacUfacaWG6bqcfa4aaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaacYcacaWG6bqcfa4aaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiaacYcacaWG6bqcfa4aaSbaaSqaaKqzGeGaaG4maaWcbeaajugibiaacYcacaWG6bqcfa4aaSbaaSqaaKqzGeGaaGinaaWcbeaajugibiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaamOEaKqbaoaaBaaaleaajugibiaad6gacqGHRaWkcaaIXaaaleqaaKqzGeGaaiyxaiaacMcaaaa@5727@ must satisfy

Az=0      (18) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadQhacqGH9aqpcaaIWaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqG4aGaaeykaaaa@4222@

For a branch point, there must exist two tangents at the singularity. Let the two tangents be z and w. This implies that

Az=0        (19) Aw=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGbbGaamOEaiabg2da9iaaicdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeyoaiaabMcaaeaacaWGbbGaam4Daiabg2da9iaaicdaaaaa@46F2@

Consider a vector v that is orthogonal to one of the tangents (say z). v can be expressed as a linear combination of z and (v=αz+βw). MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4DaiaabccacaGGOaGaamODaiabg2da9iabeg7aHjaadQhacqGHRaWkcqaHYoGycaWG3bGaaiykaiaac6caaaa@43CC@ Since Az=Aw=0;Av=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbbGaamOEaiabg2da9iaadgeacaWG3bGaeyypa0JaaGimaiaacUdacaWGbbGaamODaiabg2da9iaaicdaaaa@410E@ and since z and v are orthogonal,

z T v=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaCaaaleqabaGaamivaaaakiaadAhacqGH9aqpcaaIWaaaaa@3CCF@ . Hence Bv=[ A z T ]v=0 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaadAhacqGH9aqpdaWadaabaeqabaGaamyqaaqaaiaadQhadaahaaWcbeqaaiaadsfaaaaaaOGaay5waiaaw2faaiaadAhacqGH9aqpcaaIWaaaaa@4257@ which implies that B is singular.

Let any of the functions fi are separable into 2 functions φ1, φ2 as

f i = ϕ 1 ϕ 2       (20) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGPbaabeaakiabg2da9iabew9aMnaaBaaaleaacaaIXaaabeaakiabew9aMnaaBaaaleaacaaIYaaabeaakiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGYaGaaeimaiaabMcaaaa@471F@

At steady-state f i (x,α)=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGPbaabeaakiaacIcacaWG4bGaaiilaiabeg7aHjaacMcacqGH9aqpcaaIWaaaaa@4079@ and this will imply that either φ1 = 0 or φ2 = 0 or both φ1 and φ2 must be 0. This implies that two branches φ1 = 0 and φ2 = 0 will meet at a point where both φ1 and 2 are 0.

At this point, the matrix B will be singular as a row in this matrix would be

[ f i x k | f i α ]      (21) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGBbqcfa4aaSaaaOqaaKqzGeGaeyOaIyRaamOzaKqbaoaaBaaaleaajugibiaadMgaaSqabaaakeaajugibiabgkGi2kaadIhajuaGdaWgaaWcbaqcLbsacaWGRbaaleqaaaaajugibiaacYhajuaGdaWcaaGcbaqcLbsacqGHciITcaWGMbqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaaaOqaaKqzGeGaeyOaIyRaeqySdegaaiaac2facaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaabgdacaqGPaaaaa@54D4@

However,

[ f i x k = ϕ 1 (=0) ϕ 2 x k + ϕ 2 (=0) ϕ 1 x k =0(k=1.,,n)       (22) f i α = ϕ 1 (=0) ϕ 2 α + ϕ 2 (=0) ϕ 1 α ]=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaGGBbWaaSaaaeaacqGHciITcaWGMbWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGRbaabeaaaaGccqGH9aqpcqaHvpGzdaWgaaWcbaGaaGymaaqabaGccaGGOaGaeyypa0JaaGimaiaacMcadaWcaaqaaiabgkGi2kabew9aMnaaBaaaleaacaaIYaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaam4AaaqabaaaaOGaey4kaSIaeqy1dy2aaSbaaSqaaiaaikdaaeqaaOGaaiikaiabg2da9iaaicdacaGGPaWaaSaaaeaacqGHciITcqaHvpGzdaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadUgaaeqaaaaakiabg2da9iaaicdacaGGOaGaeyiaIiIaam4Aaiabg2da9iaaigdacaGGUaGaaiilaiaacYcacaWGUbGaaiykaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaabkdacaqGPaaabaWaaSaaaeaacqGHciITcaWGMbWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaeqySdegaaiabg2da9iabew9aMnaaBaaaleaacaaIXaaabeaakiaacIcacqGH9aqpcaaIWaGaaiykamaalaaabaGaeyOaIyRaeqy1dy2aaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaeqySdegaaiabgUcaRiabew9aMnaaBaaaleaacaaIYaaabeaakiaacIcacqGH9aqpcaaIWaGaaiykamaalaaabaGaeyOaIyRaeqy1dy2aaSbaaSqaaiaaigdaaeqaaaGcbaGaeyOaIyRaeqySdegaaiaac2facqGH9aqpcaaIWaaaaaa@92ED@

This implies that every element in the row [ f i x k | f i α ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4wamaalaaabaGaeyOaIyRaamOzamaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaam4AaaqabaaaaOGaaiiFamaalaaabaGaeyOaIyRaamOzamaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kabeg7aHbaacaGGDbaaaa@485D@ would be 0, and hence the matrix B would be singular. The singularity in B implies that there exists a branch point.

Model 1

In the antibiotic model 1, a branch point was located at (sval,rval, β s ) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadohacaWG2bGaamyyaiaadYgacaGGSaGaamOCaiaadAhacaWGHbGaamiBaiaacYcacqaHYoGydaWgaaWcbaGaam4CaaqabaGccaGGPaaaaa@4521@ values of (0, 0, 0.3204). Here, the two distinct functions can be obtained from the first ODE in the antibiotic model 1

d(sval) dt = β s sval(1svalrval)αsval μ s sval      (23) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaaiikaiaadohacaWG2bGaamyyaiaadYgacaGGPaaabaGaamizaiaadshaaaGaeyypa0JaeqOSdi2aaSbaaSqaaiaadohaaeqaaOaeaaaaaaaaa8qacaWGZbGaamODaiaadggacaWGSbGaaiikaiaaigdacqGHsislcaWGZbGaamODaiaadggacaWGSbGaeyOeI0IaamOCaiaadAhacaWGHbGaamiBaiaacMcacqGHsislcqaHXoqycaWGZbGaamODaiaadggacaWGSbGaeyOeI0IaeqiVd02aaSbaaSqaaiaadohaaeqaaOGaam4CaiaadAhacaWGHbGaamiBaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGYaGaae4maiaabMcaaaa@67C8@

The two distinct functions are

sval=0      (24) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaadAhacaWGHbGaamiBaiabg2da9iaaicdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaabsdacaqGPaaaaa@4424@

and

β s (1svalrval)α μ s =0      (25) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaSbaaSqaaiaadohaaeqaaOaeaaaaaaaaa8qacaGGOaGaaGymaiabgkHiTiaadohacaWG2bGaamyyaiaadYgacqGHsislcaWGYbGaamODaiaadggacaWGSbGaaiykaiabgkHiTiabeg7aHjabgkHiTiabeY7aTnaaBaaaleaacaWGZbaabeaakiabg2da9iaaicdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaabwdacaqGPaaaaa@5528@

Substituting sval=0, rval=0, βs = 0.3204, µs = 0.2, α = 0.1204 satisfies both the distict function equations and validates the theorem computationally.

Model 2

In the antibiotic model 1, a branch point was located at (sval,rval,xval, τ 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadohacaWG2bGaamyyaiaadYgacaGGSaGaamOCaiaadAhacaWGHbGaamiBaiaacYcacaWG4bGaamODaiaadggacaWGSbGaaiilaiabes8a0naaBaaaleaacaaIYaaabeaakiaacMcaaaa@4988@ values of (0.242641, 0, 0.757359, 0.583125).

Here the two distinct functions can be obtained from the second ODE in model 2

d(rval) dt =βxval(1c)rval( τ 2 +γ+μ)rvalσβc(sval)(rval)     (26) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaaiikaiaadkhacaWG2bGaamyyaiaadYgacaGGPaaabaGaamizaiaadshaaaGaeyypa0JaeqOSdiMaamiEaiaadAhacaWGHbGaamiBaiaacIcacaaIXaGaeyOeI0Iaam4yaiaacMcacaWGYbGaamODaiaadggacaWGSbGaeyOeI0Iaaiikaiabes8a0naaBaaaleaacaaIYaaabeaakiabgUcaRiabeo7aNjabgUcaRiabeY7aTjaacMcacaWGYbGaamODaiaadggacaWGSbGaeyOeI0Iaeq4WdmNaeqOSdiMaam4yaiaacIcacaWGZbGaamODaiaadggacaWGSbGaaiykaiaacIcacaWGYbGaamODaiaadggacaWGSbGaaiykaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabkdacaqG2aGaaeykaaaa@7183@

The two distinct functions are

rval=0     (27) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaadAhacaWGHbGaamiBaiabg2da9iaaicdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGYaGaae4naiaabMcaaaa@4383@

and

βxval(1c)( τ 2 +γ+μ)σβc(sval)=0      (28) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaamiEaiaadAhacaWGHbGaamiBaiaacIcacaaIXaGaeyOeI0Iaam4yaiaacMcacqGHsislcaGGOaGaeqiXdq3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeq4SdCMaey4kaSIaeqiVd0MaaiykaiabgkHiTiabeo8aZjabek7aIjaadogacaGGOaGaam4CaiaadAhacaWGHbGaamiBaiaacMcacqGH9aqpcaaIWaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabkdacaqG4aGaaeykaaaa@5E31@

Substituting (sval,rval,xval, τ 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadohacaWG2bGaamyyaiaadYgacaGGSaGaamOCaiaadAhacaWGHbGaamiBaiaacYcacaWG4bGaamODaiaadggacaWGSbGaaiilaiabes8a0naaBaaaleaacaaIYaaabeaakiaacMcaaaa@4988@ values of (0.242641, 0, 0.757359, 0.583125) and

μ=0.1;β=1; γ=1/30;σ=0.25;c=0.05; MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBcqGH9aqpcaaIWaGaaiOlaiaaigdacaGG7aGaeqOSdiMaeyypa0JaaGymaiaacUdacaqGGaGaeq4SdCMaeyypa0JaaGymaiaac+cacaaIZaGaaGimaiaacUdacqaHdpWCcqGH9aqpcaaIWaGaaiOlaiaaikdacaaI1aGaai4oaiaadogacqGH9aqpcaaIWaGaaiOlaiaaicdacaaI1aGaai4oaaaa@54DD@ satisfies both equations, validating the theorem.

Additionally, the MNLMPC calculations in both models converge to the Utopia solution, justifying the analysis of Sridhar [33].

7. Conclusion

Bifurcation analysis and multiobjective nonlinear control (MNLMPC) studies in two antibiotic models. The bifurcation analysis revealed the existence and branch points in both models. The branch points (which cause multiple steady-state solutions from a singular point) are very beneficial because they enable the Multiobjective nonlinear model predictive control calculations to converge to the Utopia point (the best possible solution) in the models. It is proved (with computational validation) that the branch points were caused because of the existence of two distinct separable functions in one of the equations in each dynamic model. A theorem was developed to demonstrate this fact for any dynamic model. A combination of bifurcation analysis and Multiobjective Nonlinear Model Predictive Control (MNLMPC) for dynamic models involving antibiotics is the main contribution of this paper.

Data availability statement

All data used is presented in the paper

Acknowledgement

Dr. Sridhar thanks Dr. Carlos Ramirez and Dr. Suleiman for encouraging him to write single-author papers

References

  1. Bonhoeffer S, Lipsitch M, Levin BR. Evaluating treatment protocols to prevent antibiotic resistance. Proc Natl Acad Sci U S A. 1997;94(22):12106–11. Available from: https://doi.org/10.1073/pnas.94.22.12106
  2. Austin D, Anderson R. Studies of antibiotic resistance within the patient, hospitals, and the community using simple mathematical models. Philos Trans R Soc Lond B Biol Sci. 1999;354(1384):721–38. Available from: https://doi.org/10.1098/rstb.1999.0425
  3. Lipsitch M, Bergstrom CT, Levin BR. The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proc Natl Acad Sci U S A. 2000;97(4):1938–43. Available from: https://doi.org/10.1073/pnas.97.4.1938
  4. Weinstein RA, Bonten MJ, Austin DJ, Lipsitch M. Understanding the spread of antibiotic resistant pathogens in hospitals: mathematical models as tools for control. Clin Infect Dis. 2001;33(10):1739–46. Available from: https://doi.org/10.1086/323761
  5. Bergstrom CT, Lo M, Lipsitch M. Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals. Proc Natl Acad Sci U S A. 2004;101(36):13285–90. Available from: https://doi.org/10.1073/pnas.0402298101
  6. Webb GF, D’Agata EMC, Magal P, Ruan S. A model of antibiotic resistant bacterial epidemics in hospitals. Proc Natl Acad Sci U S A. 2005;102(37):13343–8. Available from: https://doi.org/10.1073/pnas.0504053102
  7. Alavez-Ramírez J, Castellanos JRA, Esteva L, Flores JA, Fuentes-Allen JL, García-Ramos G, et al. Within-host population dynamics of antibiotic-resistant M. tuberculosis. Math Med Biol. 2007;24(1):35–56. Available from: https://doi.org/10.1093/imammb/dql026
  8. Boldin B, Bonten MJM, Diekmann O. Relative effects of barrier precautions and topical antibiotics on nosocomial bacterial transmission: results of multi-compartment models. Bull Math Biol. 2007;69(7):2227–48. Available from: https://doi.org/10.1007/s11538-007-9205-1
  9. D’Agata EMC, Magal P, Olivier D, Ruan S, Webb GF. Modeling antibiotic resistance in hospitals: the impact of minimizing treatment duration. J Theor Biol. 2007;249(3):487–99. Available from: https://doi.org/10.1016/j.jtbi.2007.08.011
  10. Massad E, Burattini MN, Coutinho FAB. An optimization model for antibiotic use. Appl Math Comput. 2008 Apr 1;201(1-2):161–7. Available from: https://researchonline.lshtm.ac.uk/id/eprint/3515878/
  11. Hellweger FL, Ruan X, Sanchez S. A simple model of tetracycline antibiotic resistance in the aquatic environment (with application to the Poudre river). Int J Environ Res Public Health. 2011;8(2):480–97. Available from: https://doi.org/10.3390/ijerph8020480
  12. Martínez JL, Olivares J. Environmental pollution by antibiotic resistance genes. In: Keen PL, Montforts MH, editors. Antimicrobial Resistance in the Environment. Wiley-Blackwell; 2012;151–71. Available from: http://dx.doi.org/10.1002/9781118156247.ch9
  13. Liu M, Huo H, Li Y. A competitive model in a chemostat with nutrient recycling and antibiotic treatment. Nonlinear Anal Real World Appl. 2012;13(6):2540–55. Available from: http://dx.doi.org/10.1016/j.nonrwa.2012.02.016
  14. Bootsma M, van der Horst M, Guryeva T, Ter Kuile B, Diekmann O. Modeling non-inherited antibiotic resistance. Bull Math Biol. 2012;74(8):1691–705. Available from: https://doi.org/10.1007/s11538-012-9731-3
  15. Esteva L, Romero-Leiton JP. Mathematical modeling on bacterial resistance to multiple antibiotics caused by spontaneous mutations. Biosystems. 2014;117:60–7. Available from: https://doi.org/10.1016/j.biosystems.2014.01.005
  16. Ibarguen-Mondragón E, Romero-Leiton JP, Esteva L, Burbano E. Mathematical modeling of bacterial resistance to antibiotics by mutations and plasmids. J Biol Syst. 2016;24(1):129–46. Available from: https://doi.org/10.1142/S0218339016500078
  17. Cen X, Feng Z, Zheng Y, Zhao Y. Bifurcation analysis and global dynamics of a mathematical model of antibiotic resistance in hospitals. J Math Biol. 2017;75(6-7):1463–85. Available from: https://doi.org/10.1007/s00285-017-1128-3
  18. Mena H, Pfurtscheller LM, Romero-Leiton JP. Random perturbations in a mathematical model of bacterial resistance: Analysis and optimal control. Math Biosci Eng. 2020;17(5):4477–99. Available from: https://doi.org/10.3934/mbe.2020247
  19. Dhooge A, Govaerts W, Kuznetsov AY. MATCONT: A Matlab package for numerical bifurcation analysis of ODEs. ACM Trans Math Softw. 2003;29(2):141–64. Available from: https://doi.org/10.1145/779359.779362
  20. Dhooge A, Govaerts W, Kuznetsov YA, Mestrom W, Riet AM. CL_MATCONT: A continuation toolbox in Matlab. 2004. Available from: http://dx.doi.org/10.1145/952532.952567
  21. Kuznetsov YA. Elements of applied bifurcation theory. New York: Springer; 1998. Available from: https://www.ma.imperial.ac.uk/~dturaev/kuznetsov.pdf
  22. Kuznetsov YA. Five lectures on numerical bifurcation analysis. Utrecht University; 2009.
  23. Govaerts WJF. Numerical methods for bifurcations of dynamical equilibria. Philadelphia (PA): SIAM; 2000. Available from: https://epubs.siam.org/doi/pdf/10.1137/1.9780898719543.fm
  24. Dubey SR, Singh SK, Chaudhuri BB. Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing. 2022;503:92–108. Available from: https://doi.org/10.1016/j.neucom.2022.06.111
  25. Kamalov AF, Nazir M, Safaraliev AK, Cherukuri R, Zgheib R. Comparative analysis of activation functions in neural networks. In: 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS); 2021; Dubai, UAE. IEEE; 2021;1–6.
  26. Szandała T. Review and comparison of commonly used activation functions for deep neural networks. arXiv. 2020. Available from: https://doi.org/10.48550/arXiv.2010.09458
  27. Sridhar LN. Bifurcation analysis and optimal control of the tumor macrophage interactions. Biomed J Sci Tech Res. 2023;53(5):BJSTR.MS.ID.008470. Available from: http://dx.doi.org/10.26717/BJSTR.2023.53.008470
  28. Sridhar LN. Elimination of oscillation causing Hopf bifurcations in engineering problems. J Appl Math. 2024;2(4):1826. Available from: https://doi.org/10.59400/jam1826
  29. Flores-Tlacuahuac A, Morales P, Toledo MR. Multiobjective nonlinear model predictive control of a class of chemical reactors. Ind Eng Chem Res. 2012;51(16):5891–9. Available from: https://doi.org/10.1021/ie201742e
  30. Hart WE, Laird CD, Watson JP, Woodruff DL, Hackebeil GA, Nicholson BL, Siirola JD. Pyomo – Optimization modeling in Python. 2nd ed. Vol. 67. Springer; 2017. Available from: https://link.springer.com/book/10.1007/978-3-319-58821-6
  31. Wächter A, Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program. 2006;106(1):25–57. Available from: https://doi.org/10.1007/s10107-004-0559-y
  32. Tawarmalani M, Sahinidis NV. A polyhedral branch-and-cut approach to global optimization. Math Program. 2005;103(2):225–49. Available from: https://www.researchgate.net/publication/220589259_A_polyhedral_branch-and-cut_approach_to_global_optimization
  33. Sridhar LN. Coupling bifurcation analysis and multiobjective nonlinear model predictive control. Austin Chem Eng. 2024;10(3):1107. Available from: https://austinpublishinggroup.com/chemical-engineering/fulltext/ace-v11-id1107.pdf
  34. Upreti SR. Optimal control for chemical engineers. Boca Raton (FL): Taylor and Francis; 2013;30. Available from: https://doi.org/10.1201/b13045

Advertisement

 

Help ?