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Abstract

Many infections are treated using antibiotics. The dynamics of treatment involving antibiotics are extremely nonlinear. Bifurcation analysis is a powerful mathematical 
tool used to deal with the nonlinear dynamics of any process. Several factors must be considered, and multiple objectives must be met simultaneously. Bifurcation 
analysis and multi-objective nonlinear model predictive control (MNLMPC) calculations are performed on two dynamic models involving antibiotics. The MATLAB program 
MATCONT was used to perform the bifurcation analysis. The MNLMPC calculations were performed using the optimization language PYOMO in conjunction with the 
state-of-the-art global optimization solvers IPOPT and BARON. The bifurcation analysis revealed the existence of branch points in both models. The branch points (which 
cause multiple steady-state solutions from a singular point) are very benefi cial because they enable the Multiobjective nonlinear model predictive control calculations to 
converge to the Utopia point (the best possible solution) in the models. It is proven (with computational validation) that the branch points were caused because of the 
existence of two distinct separable functions in one of the equations in each dynamic model. A theorem was developed to demonstrate this fact for any dynamic model.

1. Background

The complex dynamics of the treatment of affl ictions using 
antibiotics have triggered a lot of research during the last few 
decades. Bonhoef, et al. [1] evaluated treatment protocols to 
prevent antibiotic resistance. Austin and Anderson [2] conducted 
studies of antibiotic resistance within the patient, hospitals, and 
the community using simple mathematical models. Lipstich, 
et al. [3] studied the epidemiology of antibiotic resistance 
in hospitals. Weinstein, et al. [4] researched the spread of 
antibiotic-resistant pathogens in hospitals with mathematical 
models as tools for control. Bergstrom, et al. [5] developed an 
ecological theory that suggests that antimicrobial cycling will 
not reduce antimicrobial resistance in hospitals. Webb, et al. [6] 
developed a model of antibiotic-resistant bacterial epidemics 
in hospitals. Alavez-Ramirez, et al. [7] studied the within-host 
population dynamics of antibiotic-resistant M. Tuberculosis. 
Boldin, et al. [8] investigated the effects of barrier precautions 
and topical antibiotics on nosocomial bacterial transmission 
using multi-compartment models. D’Agata, et al. [9] modelled 

antibiotic resistance in hospitals and studied the impact of 
minimizing treatment duration. Massad, et al. [10] developed 
an optimization model for antibiotic use. Hellweger, et al. [11] 
developed a simple model of tetracycline antibiotic resistance 
in the aquatic environment. Martinez, et al. [12] studied the 
environmental pollution by antibiotic resistance genes, and 
Liu, et al. [13] developed a competitive model in a chemostat 
with nutrient recycling and antibiotic treatment. Bootsma, 
et al. [14] studied various models of non-inherited antibiotic 
resistance, and Esteva, et al. [15] developed mathematical 
models on bacterial resistance to multiple antibiotics caused 
by spontaneous mutations. Ibarguen-Mondragón, et al. [16] 
performed mathematical modelling of bacterial resistance 
to antibiotics by mutations and plasmids. Cen, et al. [17] 
performed bifurcation analysis of a mathematical model of 
antibiotic resistance in hospitals. Mena, et al. [18] investigated 
the random perturbations in a mathematical model of bacterial 
resistance, performing analysis and optimal control. This 
work aims to perform bifurcation analysis and multiobjective 
nonlinear control (MNLMPC) studies in two models involving 
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antibiotics, which are discussed in Mena, et al. [18] (model 
1) and Cen, et al. [17] (model 2). The paper is organized as 
follows. First, the model equations are presented, followed by 
a discussion of the numerical techniques involving bifurcation 
analysis and Multiobjective Nonlinear Model Predictive Control 
(MNLMPC). The results are then presented, followed by the 
discussion and conclusions. The integration of bifurcation 
analysis and dynamic optimization is the novelty of this 
research.

2. Model description

Model 1 Mena, et al. [18] 

The model equations are 

(1 )

(1 ) (1 )

( )

( )

d sval
s

dt

d rv

sval sval rval sval svals

val sval rval q sval rvalr
al

rr
dt

 

 









   

    
  

                (1)

sval and rval denote the number of sensitive and resistant 
bacteria population to antibiotics, respectively. The base values 
of the parameters are 

0.4; 0.1; 0.2; 0.5; 0.1204; 0.3992; 0.5;qs r s s           
 

Model 2 Cen, et al. [17] 

( )
( ) ( ) ( )( )1 2

( )
(1 ) ( ) ( )( )2

( )
(1 ) ( ) ( ) ( )1 2 2

(1 ) ( )

      

    

       

 

      

     

        

  

d sval
m sval xval sval c sval rval

dt

d rval
xval c rval rval c sval rval

dt

d xval
m sval rval sval xval

dt

xval c rval xval

  

                   (2)

The model considers two strains of a bacterial species 
having two antimicrobial agents. Individuals may have strains 
of these bacteria that are either sensitive (sval) or resistant 
(rval) to the fi rst drug, or they may be free of these bacteria 
(xval). . The base values of the parameters are 

0.75; 0.1; 1; 0.35; 0.1;  1 / 30; 0.25; 0.05;1 2m c              

3. Bifurcation analysis 

The MATLAB software MATCONT is used to perform 
the bifurcation calculations. Bifurcation analysis deals with 
multiple steady-states and limit cycles. Multiple steady states 
occur because of the existence of branch and limit points. 
Hopf bifurcation points cause limit cycles. A commonly used 
MATLAB program that locates limit points, branch points, and 
Hopf bifurcation points is MATCONT [19,20]. This program 
detects Limit Points (LP), Branch Points (BP), and Hopf 
bifurcation points (H) for an ODE system 

( , )
dx

f x
dt

                   (3)

nx R  Let the bifurcation parameter be α. Since the 

gradient is orthogonal to the tangent vector, 

The tangent plane at any point 1 2 3 4 1[ , , , ,.... ]nz z z z z z   
must satisfy 

0Az                    (4)

Where A is 

[ / | / ]A f x f                      (5)

where /f x   is the Jacobian matrix. For both limit and 

branch points, the matrix [ / ]f x   must be singular. The n+1th 

component of the tangent vector 1 0nz    for a limit point (LP) 

and for a branch point (BP) the matrix T

A

z

 
 
 

 must be singular. 
At a Hopf bifurcation point, 

det(2 ( , ) @ ) 0f x Ix n                 (6)

@ indicates the bialternate product while In is the n-square 
identity matrix. Hopf bifurcations cause limit cycles and 
should be eliminated because limit cycles make optimization 
and control tasks very diffi cult. More details can be found in 
Kuznetsov [21,22] and Govaerts [23]. 

Hopf bifurcations cause unwanted oscillatory behavior and 
limit cycles. The tanh activation function (where a control 

value u is replaced by) ( tanh / )u u   is commonly used in 

neural nets [24]; Kamalov, et al. [25] and Szandała 2020 
[26] and optimal control problems [27] to eliminate spikes 
in the optimal control profi le. Hopf bifurcation points cause 
oscillatory behavior. Oscillations are similar to spikes, and the 
results in Sridhar [24] demonstrate that the tanh factor also 
eliminates the Hopf bifurcation by preventing the occurrence of 
oscillations. Sridhar [28] explained with several examples how 
the activation factor involving the tanh function successfully 
eliminates the limit cycle causing Hopf bifurcation points. This 
was because the tanh function increases the time period of the 
oscillatory behavior, which occurs in the form of a limit cycle 
caused by Hopf bifurcations. 

4. Multiobjective Nonlinear Model Pre-
dictive Control (MNLMPC) 

Flores Tlacuahuaz, et al. [29] developed a Multiobjective 
Nonlinear Model Predictive Control (MNLMPC) method that is 
rigorous and does not involve weighting functions or additional 
constraints. This procedure is used for performing the MNLMPC 

calculations Here  
0

( ) j 1,  2..n
i f

i

t t

j i
t
q t





  represents the variables 

that need to be minimized/maximized simultaneously for a 
problem involving a set of ODE 
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( , )dx F x u
dt

                   (7)

 tf being the fi nal time value, and n the total number of 
objective variables and .u the control parameter. This MNLMPC 
procedure fi rst solves the single objective optimal control 
problem independently optimizing each of the variables 

0

( )
i f

i

t t

j i
t
q t





  individually. The minimization/maximization of 

0

( )
i f

i

t t

j i
t
q t





  will lead to the values *
jq . Then the optimization 

problem that will be solved is 

0

* 2

1

min( ( ( ) ))

( , );

i f

i

t tn

j i j
j t

q t q

dxsubject to F x u
dt











 
               (8)

This will provide the values of u at various times. The fi rst 
obtained control value of u is implemented and the rest are 
discarded. This procedure is repeated until the implemented 
and the fi rst obtained control values are the same or if the 

Utopia point where 
0

*( ( ) for all j)
i f

i

t t

j i j
t

q t q




  is obtained. 

Pyomo [30] is used for these calculations. Here, the 
differential equations are converted to a Nonlinear Program 
(NLP) using the orthogonal collocation method The NLP is 
solved using IPOPT [31] and confi rmed as a global solution with 
BARON [32]. 

The steps of the algorithm are as follows 

1. Optimize 
0

( )
i f

i

t t

j i
t
q t





  and obtain 
*
jq  at various time 

intervals ti. The subscript i is the index for each time 
step. 

2. Minimize 

0

* 2

1

( ( ( ) ))
i f

i

t tn

j i j
j t

q t q






  and get the control 

values for various times.

3. Implement the fi rst obtained control values 

4. Repeat steps 1 to 3 until there is an insignifi cant difference 
between the implemented and the fi rst obtained value of 
the control variables or if the Utopia point is achieved. 

The Utopia point is when 

0

*( )
i f

i

t t

j i j
t

q t q




  for all j. 

Sridhar [33] proved that the MNLMPC calculations to 
converge to the Utopia solution when the bifurcation analysis 
revealed the presence of limit and branch points. This was 
done by imposing the singularity condition on the co-state 

equation [34]. If the minimization of q1 lead to the value 
*
1q  

and the minimization of q2 lead to the value 
*
2q  The MNLPMC 

calculations will minimize the function * 2 * 2
1 1 2 2( ) ( )q q q q   . 

The multiobjective optimal control problem is

* 2 * 2
1 1 2 2min ( ) ( ) ( , )dxq q q q subject to F x u

dt
                      (9) 

Differentiating the objective function results in 

* 2 * 2 * *(( ) ( ) ) 2( ) ( )1 1 2 2 1 1 1 1

* *2( ) ( )2 2 2 2

     

  

d d
q q q q q q q q

dx dxi i

d
q q q q

dxi

    
                  (10)

The Utopia point requires that both 
* *

1 1 2 2( ) and ( )q q q q   
are zero. Hence  

* 2 * 2
1 1 2 2(( ) ( ) ) 0

i

d q q q q
dx

                   (11)

the optimal control co-state equation [34] is 

* 2 * 2
1 1 2 2( ) (( ) ( ) ) ; ( ) 0i x i i f

i

d d q q q q f t
dt dx

                  (12)

λi is the Lagrangian multiplier. tf is the fi nal time. The fi rst 
term in this equation is 0 and hence 

( ) ; ( ) 0
d

f txi i i fdt
                   (13)

At a limit or a branch point, for the set of ODE ( , )
dx

f x u
dt

  

fx is singular. Hence there are two different vectors-values 

for [λi] where ( ) 0 and ( ) 0i i
d d
dt dt

   . In between there is a 

vector [λi] where ( ) 0
d

idt
  . This, coupled with the boundary 

condition ( ) 0ti f   will lead to [ i] = 0 This makes the problem 

an unconstrained optimization problem, and the only solution 
is the Utopia solution. 

5. Results

Model 1

The bifurcation analysis (with βs as the bifurcation 

parameter) revealed a branch point at ( , , )ssval rval   values of 
(0, 0, 0.3204). 

This is shown in Figure 1a. For the MNLMPC calculations, 

0 0

( ), ( )
i f i f

i i

t t t t

i i
t t
rval t t

 

 

   were minimized individually and led to 
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values of 0 and 0. η was the control parameter. The multiobjective 
optimal control problem will involve the minimization of 

0 0

2 2( ( )) ( ( ))
i f i f

i i

t t t t

i i
t t
rval t t

 

 

   subject to the equations governing 

Model 1. This led to a value of zero (the Utopia solution). The 
MNLMPC control value (η) was 0.6963. Figures 1(b-d). show 
the various MNLMPC profi les. 

Model 2

The bifurcation analysis (with τ2 as the bifurcation 

parameter) revealed a branch point at 2( , , , )sval rval xval   values 

of (0.242641, 0, 0.757359, 0.583125). This is shown in Figure 
2a. 

For the MNLMPC calculations, sval(0)=0.6; 
0

( )
i f

i

t t

i
t
rval t





  was 

minimized and 
0

( )
i f

i

t t

i
t
xval t





  was maximized leading to values 

of 0 and 2. The multiobjective optimal control problem will 

involve the minimization of 
0 0

2 2( ( )) ( ( ) 2)
i f i f

i i

t t t t

i i
t t
rval t xval t

 

 

    

and resulted in the Utopia point(0). The MNLMPC control value 
(τ2) was 0.18248. Figures 2(b-d). show the various MNLMPC 
profi les. The profi le of the control variable (τ2) exhibited a lot 
of noise, which was remedied using the Savitzky-Golay fi lter. 
Both the original and the modifi ed profi les are shown in Figure 
2e.

Figure 1a: Bifurcation analysis of Antibiotic model 1 (indicating branch point).

Figure 1b: MNLMPC model 1 sval vs. t.

 

 

Figure 1c: MNLMPC model 1 rval vs. t.

 

Figure 1d: MNLMPC model 1 eta (n) vs.t.

Figure 2a: Bifurcation analysis of Antibiotic model 2 (indicating branch point).

 

 

Figure 2b: MNLMPC model 2 sval vs. t.
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6. Discussion of results

Theorem 

If one of the functions in a dynamic system is separable 
into two distinct functions, a branch point singularity will 
occur in the system. 

Proof 

Consider a system of equations 

( , )dx f x
dt

                  (14)

nx R  . Defi ning the matrix A as 

1 1 1 1 1 1

1 2 3 4

2 2 2 2 2 2

1 2 3 4

..........

..........

...........................................................

.................................................

n

n

f f f f f f
x x x x x
f f f f f f
x x x x x

A





     
     

     
     



1 2 3 4

..........

..........n n n n n n

n

f f f f f f
x x x x x 

 
 
 
 
 
 
 
 
 
       
      
 
 

             (15)

α is the bifurcation parameter. The matrix A can be written 
in a compact form as 

[ . | ]p p

q

f f
A

x 
 


                    (16)

The tangent at any point x; ( [ , , , ,.... ])1 2 3 4 1z z z z z zn   must 
satisfy 

0Az                 (17)

The matrix { }p
q

f
x



 must be singular at both limit and branch 

points. The n+1th component of the tangent vector 1 0nz    at a 

limit point (LP) and for a branch point (BP) the matrix T

A
B

z
 

  
 

 
must be singular. 

Any tangent at a point y that is defi ned by 

( [ , , , ,.... ])1 2 3 4 1z z z z z zn   must satisfy 

0Az                 (18)

For a branch point, there must exist two tangents at the 
singularity. Let the two tangents be z and w. This implies that 

0
0

Az
Aw




                 (19)

Consider a vector v that is orthogonal to one of the tangents 
(say z). v can be expressed as a linear combination of z and 

w ( ).v z w    Since 0; 0Az Aw Av    and since z and v 

are orthogonal, 

0Tz v  . Hence 0T

A
Bv v

z
 

  
 

 which implies that B is 

singular. 

Let any of the functions fi are separable into 2 functions 1, 
2 as 

1 2if                (20)

At steady-state ( , ) 0if x   and this will imply that either 1 

= 0 or 2 = 0 or both 1 and 2 must be 0. This implies that two 

branches 1 = 0 and 2 = 0 will meet at a point where both 1 and 
 2 are 0. 

At this point, the matrix B will be singular as a row in this 
matrix would be 

 

 

Figure 2c: MNLMPC model 2 rval vs. t.

 

 

Figure 2d: MNLMPC model 2 xval vs. t.

 

 

Figure 2e: MNLMPC model 2 tau2(2) with noise and tau2sg (with Savitzky Golay 
Filter) vs.t. 
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[ | ]
f fi i
xk 

 

 
               (21)

However, 

2 1
1 2

2 1
1 2

[ ( 0) ( 0) 0( 1.,, )

( 0) ( 0) ] 0

i

k k k

i

f k n
x x x
f

  

  
  

  
      

  

  
    

  
                      (22)

This implies that every element in the row [ | ]i i

k

f f
x 
 
   would 

be 0, and hence the matrix B would be singular. The singularity 
in B implies that there exists a branch point. 

Model 1

In the antibiotic model 1, a branch point was located at 

( , , )ssval rval   values of (0, 0, 0.3204). Here, the two distinct 

functions can be obtained from the fi rst ODE in the antibiotic 
model 1

( ) (1 )s ssval svad sv l rval sval svl
d

la
t

a                       (23)

The two distinct functions are 

0sval                   (24)

and

(1 ) 0ss sval rval                       (25)

Substituting sval=0, rval=0, βs = 0.3204, μs = 0.2, α = 0.1204 
satisfi es both the distict function equations and validates the 
theorem computationally. 

Model 2

In the antibiotic model 1, a branch point was located at 

2( , , , )sval rval xval   values of (0.242641, 0, 0.757359, 0.583125). 

Here the two distinct functions can be obtained from the 
second ODE in model 2

2
( ) (1 ) ( ) ( )( )d rval xval c rval rval c sval rval
dt

            
                (26)

The two distinct functions are 

0rval                  (27)

and 

2(1 ) ( ) ( ) 0xval c c sval                       (28)

Substituting 2( , , , )sval rval xval   values of (0.242641, 0, 

0.757359, 0.583125) and

0.1; 1;  1 / 30; 0.25; 0.05;c         satisfi es both 

equations, validating the theorem. 

Additionally, the MNLMPC calculations in both models 
converge to the Utopia solution, justifying the analysis of 
Sridhar [33]. 

7. Conclusion

Bifurcation analysis and multiobjective nonlinear control 
(MNLMPC) studies in two antibiotic models. The bifurcation 
analysis revealed the existence and branch points in both 
models. The branch points (which cause multiple steady-state 
solutions from a singular point) are very benefi cial because they 
enable the Multiobjective nonlinear model predictive control 
calculations to converge to the Utopia point (the best possible 
solution) in the models. It is proved (with computational 
validation) that the branch points were caused because of the 
existence of two distinct separable functions in one of the 
equations in each dynamic model. A theorem was developed to 
demonstrate this fact for any dynamic model. A combination 
of bifurcation analysis and Multiobjective Nonlinear Model 
Predictive Control (MNLMPC) for dynamic models involving 
antibiotics is the main contribution of this paper. 
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