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Abstract

Dyshormonogenesis due to thyroglobulin (TG) gene mutations is a rare cause of congenital 
hypothyroidism with an estimated incidence of approximately 1 in 100,000 newborns. The TG gene is 
organized in 48 exons, spanning over 270 kb on human chromosome 8q24. The human TG mRNA is 8.5 
Kb long and the preprotein monomer is composed of a 19 amino acids signal peptide followed by a 2749 
residues polypeptide. Until now, one hundred seventeen deleterious mutations in the human TG gene 
have been identifi ed and characterized, originating structural changes in the protein that alter the normal 
protein folding, assembly and biosynthesis of thyroid hormones: 19 splice site mutations, 23 nonsense 
mutations, 57 missense mutations, 13 deletions (9 single nucleotide deletions, 2 multiple nucleotide 
deletions and 2 involving a large number of nucleotides), 4 single nucleotide insertions or duplication 
and 1 imperfect DNA inversion. The p.R277*, p.R1511*, p.A2215D, p.R2223H and p.R2317* mutations are 
the most frequently identifi ed TG mutations in Caucasian population, whereas c.274+2T>G, p.C1058R, 
p.C1245R and p.C1977S are the most common mutations in Asian population.

TG mutations are inherited in an autosomal recessive manner and affected individuals are either 
homozygous or compound heterozygous for gene mutations and the parents should be carriers of one 
the TG mutation.

New approaches including the use of new sequencing technology, will eclipse traditional methods of 
detecting mutations and will allow the quick identifi cation of mutations in remote regions as well as the 
detection of coexistence of multiple mutations in the same gene or in different thyroid genes.
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Introduction

Thyroglobulin (TG) is a structural, ancestral and secretory 
protein with high specifi city for the biosynthesis of thyroid 
hormones. Its main function is to provide the precursor for 
synthesis and storage of thyroid hormones [1-4]. It is also an 
important storage of iodine when external iodine availability 
is limited. Biosynthesis of thyroid hormones requires the 
integrity of a complex protein system, several sequential steps 
and is critically dependent upon the native three-dimensional 
structure of TG [1-4]. The central steps in thyroid hormone 
synthesis take place at the cell–colloid interface of follicular 
thyroid cells [1-4]. Iodine is covalently bound to Tyr amino 
acids within TG. Correctly folded TG homodimers are secreted 
into the follicular lumen where coupling between either 
two diiodotyrosine (DIT) residues, or between a DIT and a 
monoiodotyrosine (MIT) residues, results in the formation of 
3,5,3´-triiodothyronine (T3) and 3,5,3´,5´-tetraiodothyronine 

(T4) [1-4]. The iodination and coupling reactions are mediated 
by thyroid peroxidase (TPO) with a source of hydrogen 
peroxide [1-4]. The H2O2 generation system of the thyroid 
involves a metabolic pathway which includes the dual oxidase 
1 and 2 (DUOX1, DUOX2), and DUOX maturation factor 1 and 2 
(DUOXA1, DUOXA2) proteins. The mature TG molecules remain 
in the lumen of thyroid follicles. Afterwards, TG is subjected 
to proteolysis, MIT and DIT are subsequently deiodinated by 
the iodotyrosine dehalogenase [1-4]. Thyroid gland produces 
predominantly T4 together with a small amount of the T3. The 
peripheral metabolism of thyroid hormone is determined by 
the action of the D1, D2 and D3 selenodeiodinases that catalyze 
the interconversion of T4 in T3 [5]. 

Thyroid hormones are essential for normal central 
nervous system development [6,7]. Untreated congenital 
hypothyroidism result in irreversible mental delay and short 
stature [6,7]. For over three decades, mutations in the human 
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TG gene have been identifi ed associated with congenital goiter 
[8-53] and also endemic and nonendemic goiter [54-56]. The 
clinical spectrum ranges from euthyroidism to permanent 
severe hypothyroidism [1,2,6,7]. Phenotypic variations among 
patients with the same mutations have been observed. In 
addition to iodine defi ciency, other environmental and genetic 
factors may contribute to clinical variability.

In this review we summarize the most recent data related 
to thyroid disorders caused by mutations in the TG gene and 
provide data that have an impact on the disease management 
as well counseling benefi ts for the patients and their families. 

Classifi cation and diagnosis of congenital hypothyroi-
dism 

Congenital hypothyroidism (CH) is the most frequent 
endocrine disease in infants, with prevalence of 1:2000 - 
1:3000 newborns and is characterized by high levels of thyroid-
stimulating hormone (TSH) as a consequence of reduced 
thyroid function [1,2,6,7]. It is also one of the most common 
preventable causes of cognitive and motor defi cits. Prevention 
of CH is based on carrier identifi cation, genetic counseling and 
prenatal diagnosis. In neonates a complete diagnosis of CH 
should include clinical examination, biochemical thyroid tests, 
thyroid ultrasound, radioiodine or technetium scintigraphy and 
perchlorate discharge test (PDT) [6,7]. In the last three decades, 
considerable progress has been made in identifying the genetic 
and molecular causes of CH. Knowing the prevalence of the 
mutations present in each population will facilitate greatly the 
molecular genetic testing. The classifi cation based on the genetic 
alterations divides CH into two main categories caused: (a) by 
disorders of thyroid gland development (dysembriogenesis or 
thyroid dysgenesis group) or (b) by defects in any of the steps 
of thyroid hormone synthesis (dyshormonogenesis group) 
[1,2,6,7]. The dysembryogenesis or thyroid dysgenesis group, 
which accounts for the 80-85 % of the cases, results from a 
thyroid gland that is completely absent in orthotopic or ectopic 
location (agenesis or athyreosis), severely reduced in size but 
in the proper position in the neck (orthotopic hypoplasia) or 
located in an unusual position (thyroid ectopy) at the base of 
the tongue or along the thyroglossal duct [1,2,6,7]. In only 
5% of the patients, CH is associated with mutations in genes 
responsible for the development or growth of thyroid cells: 
NKX2.1 (also known as TTF1 or T/EBP), FOXE1 (also known 
as TTF2 or FKHL15), paired box transcription factor 8 (PAX-8), 
NKX2.5, and TSHR genes [1,2,6,7]. Epigenetic mechanisms 
leading to stochastic variations in the expression of multiple 
loci could be responsible for the sporadic characteristic of 
thyroid dysgenesis. Consequently, the genetic mechanisms 
underlying the defects in thyroid organogenesis in the majority 
of the cases remain to be elucidated.

Dyshormonogenesis, which accounts for the remaining 15-
20% of the cases, has been linked to mutations in the SLC5A 
(Na+/I_ symporter, NIS) [57], SLC26A4 (Pendrine, PDS) [58], 
TPO [59], dual oxidasa2 (DUOX2), DUOX maturation factor 1 and 
2 (DUOXA1 and DUOXA2) [60,61], iodotyrosine dehalogenase 1 
(DEHAL1) [62] and thyroglobulin (TG) [1-4,8-56] genes. These 
mutations produce a heterogeneous spectrum of congenital 
hypothyroidism, with an autosomal recessive inheritance. 
Thereafter, the patients are typically homozygous or compound 

heterozygous for the gene mutations and the parents, carriers 
of one mutation. 

Dyshormonogenesis due to TG gene mutations is a rare 
cause of CH with an estimated incidence of approximately 1 
in 100,000 newborns [1,2]. The patients with TG synthesis 
defects presents a congenital goiter or goiter appearing shortly 
after birth, clinical spectrum ranges from euthyroid to mild or 
severe permanent hypothyroidism, high iodide uptake, normal 
organifi cation of iodide (negative PDT), elevated serum TSH 
with simultaneous low or normal serum T4 and T3 levels, and 
low serum TG concentration [1-2,8-53]. The presence of very 
low TG level and also negative PDT in a goitrous individual are 
the basis for the selection of patients for molecular studies 
in the TG gene [2]. Patients with iodotyrosine dehalogenase 
defi ciency will also develop goiter with hypothyroidism, when 
dietary iodide is limiting. In these patients the PDT does not 
show increased release of radioiodine after administration of 
the competitor, indicating that the organifi cation process itself 
is not affected, whereas the serum TG levels are frequently 
elevated [2,62]. Patients with an iodide transport defect by 
mutations in SLC5A gene have a normal-sized or somewhat 
enlarged thyroid gland, elevated plasma TG levels and no 
radio-iodide uptake [2,57]. Iodide organifi cation defects are 
associated with mutations in the TPO, DUOX2, DUOXA2 or 
SLC26A4 genes and characterized by a positive PDT [2,59-
61]. Mutations in SLC26A4 gene cause Pendred syndrome 
characterized by congenital sensorineural hearing loss and 
goiter without or with hypothyroidism [2,58].

TG gene and its expression 

Human TG gene is a single copy gene of 270 kb long that 
maps on chromosome 8q24 and contains an 8,459-8,468 
nucleotides coding sequence (GenBank Accesion Number: 
NM_003235.4) divided into 48 exons (Figure 1a) [63-71]. TG 
gene expression is stimulated by TSH through the modulation 
of the intracellular level of cyclic adenosine monophosphate 
(cAMP) [1-3]. TSH exerts its function via a G protein-coupled 
receptor, the TSH receptor (TSHR), which relies on the 
associated G protein to transmit and amplify the signal inside 
the cell [1-3]. Transcription of the TG gene is under control of 
the coordinated action of a master set of transcription factors 
that includes the NKX2.1, FOXE1 and PAX8, by their binding to 
the TG promoter on their respective consensus sequences [1-3].

TG is a large homodimeric secretory protein (660 kDa) with 
a high degree of glycosylation [1-4]. The human TG mRNA 
codes for a polypeptide chain of 2767 amino acids [63-65]. 
The monomeric TG preprotein has a leader peptide of 19 amino 
acids followed by 2748-amino-acid polypeptide (Figure 1b) 
[63-65]. Four hormonogenic acceptor tyrosine residues have 
been identifi ed and localized at positions 5, 1291, 2554 and 
2747 in human TG (Figure 1b) [1-4,72,73]. Each TG monomer 
contains 67 Tyr and 122 Cys residues, representing 2.44% and 
4.44% of the total amino acids, respectively [63-65]. 

The internal protein organization makes TG an example 
of gene evolution by intragenic duplication events and gene 
fusions. The TG protein is composed of four structural and 
functional regions (Figure 1b). The N-terminal and the central 
part of the monomer includes three types of repetitive motifs, 
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called TG type-1, TG type-2, and TG type-3, organized in 
three regions (I, II and III) (Figure 1b) [1-4,74,75], are Cys-
rich repeat domains covalently bound by disulfi de bonds. 
TG monomer contains eleven elements of type-1 repetitive 
motif located between positions 12 - 1191 and between 1492 
- 1546; three elements of type-2 repetitive motif located 
between amino acids 1437 and 1484, and fi ve elements of 
type-3 repetitive motif between residues 1584 and 2168 [1-
4,74,75]. Interestingly, type-1 repeats could function as binder 
and reversible inhibitors of protease and have been found as 
parts of six architecturally distinct protein groups: testicans, 
secreted modular calcium binding protein (SMOCs), trops, 
splice variant of the major histocompatibility complex class 
II–associated invariant chain, insulin-like growth factor–
binding protein (IGFBP) and nidogen [76]. Each repeat TG 
type-1 is composed of approximately 60 amino acids, in which 
the positions of Cys, Pro and Gly residues are highly conserved. 
Some insertions of variable length are found in fi xed positions. 
Region I comprises 10 of the 11 TG type-1 repeats, a linker, 
between repeat 1–4 and 1–5, and hinge segments (Figure 
1b). Region II contains the 3 TG type-2 repeats and the 11th 
TG type-1 repeat (Figure 1b), whereas region III contains the 
fi ve TG type-3 repeats (Figure 1b) [1-4,74,75]. The fourth 
region located in the carboxy-terminal, between residues 
2192 to 2716, is a nonrepetitive domain that shows signifi cant 
homology with the acetylcholinesterase (ACHE), named the 
ACHE-like or CheL domain (Figure 1b) [1-4,77-80]. ACHE-like 
domain is required for protein dimerization and consequently 
plays a critical structural and functional role in the TG protein 
that is essential for intracellular transport of TG to the site 
of its hormonogenesis [80]. This region functions as an 
intramolecular chaperone and as a molecular escort for TG 
regions I, II, and III [79].

After translation, intensive postranslational processes take 
place in the ER, Golgi aparatus, apical membrane and folicular 
lumen which include homodimers assembly, glycosylation, 
sialylation, sulfation, phosphorylation, iodination, 
multimerization and the formation of intrachain disulfi de 
bonds [1-4]. Several ER enzymes and molecular chaperones, 
such as calnexin (CNX), calreticulin (CRT), GRP94, BiP, Protein 
Disulfi de Isomerase (PDI), ERp57, ERp29, and ERp72 interact, 
both concurrently and sequentially, with TG during its folding 
and assembly and may serve to prevent export of improperly 
folded TG proteins [1-4].

Human thyroglobulin mutations

Molecular diagnosis of TG defi ciency has been traditionally 
established by PCR-based approaches followed by systematic 
sequence analysis. Although these classical screenings are 
capable of detecting more than 90% of all point mutations, 
they do not detect large noncoding intragenic rearrangements 
or heterozygous deletions. The fi rst-described human 
mutation causing a TG defect associated with CH was the 
mutation g.IVS3-3C>G [8]. Subcloning and sequencing of the 
cDNA fragments revealed that exon 4 is missing from the 
major TG transcript in the goiter [8]. Removal of exon 4 does 
not modify the reading frame of TG mRNA. However, exon 4 
encodes tyrosine 130 which has been proposed as an important 
donor tyrosine involved in the synthesis of thyroxine, after 
coupling with the major acceptor tyrosine at position 5 [73]. 
The loss of the tyrosine 130 provides a coherent explanation to 
the hypothyroid status of the patient [8]. To date, one hundred 
seventeen deleterious mutations in the human TG gene have 
been identifi ed and characterized: 19 splice site mutations, 23 
nonsense mutations, 57 missense mutations, 13 deletions (9 
single nucleotide deletions, 2 multiple nucleotide deletions and 
2 involving a large number of nucleotides), 4 single nucleotide 

Figure 1: Schematic representation of the human thyroglobulin gene and protein.  
a) Intron/exon organization of the thyroglobulin gene. Note the difference between scales used for introns and exons. Orientation is given according to the mRNA 
structure. 
b) Primary structure of thyroglobulin. The signal peptide (SP), repetitive units of type 1, 2 and 3 and the acetylcholinesterase-homology domain (ACHE-like domain) are 
represented by boxes. The N-terminal and the central part of the monomer are organized in three regions (I, II and III). The N-terminal limit of repeat type 1-5 is ambiguous. 
The positions for T4 (5, 1291 and 2747) and T3 (2554) formation are shown.
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insertions or duplication and 1 imperfect DNA inversion (Table 
1) [8-56]. The p.R277* [12,16,18,22,23,28,29,30,33,34,40,42,53
], p.R1511* [9,16,23,32], p.A2215D [22,26,28,29,42], p.R2223H 
[14,29,31], p.R2317* [29,38,42,52] mutations are the most 
frequently identifi ed TG mutations in Caucasian population, 
whereas c.274+2T>G [27,48,49], p.C1058R [17,20], p.C1245R 
[11,15,17,20,24,36] and p.C1977S [11,15,17,20] are the most 
common mutations in Asian population.

Exon skipping in the TG gene can be caused by nucleo-
tide substitutions or deletion in acceptor or donor splice sites 
involving the -3/-2/-1 (c.275-3C>G, c.6563-2A>G, c.2762-
1G>A, c.6200-1G>C, c.7998-1G>A) or +1/+2/+3/+4/+5/+6 po-
sition (c.638+1G>A, c.745+1G>A, c.4932+1G>C, c.5686+1G>T, 
c.5686+1G>A, c.5686+1G>C, c.6262+1delG, c.6876+1delG, 
c.274+2T>G, c.7036+2T>A, c.7862+2T>A, c.4159+3_+4delAT; 
c.3433+3_+6delGAGT, c.638+5G>A), respectively (Table 1) 
[8,10,13,16,19,20,26-28,30,36,39,40,44,46,48,49,53]. Recent-
ly, two exonic cryptic 5’splicing sites in exons 6 (c.745+1G>A) 
[46] and 19 (c.4159 + 3_+4delAT) [39] of the TG gene have been 
identifi ed. The elimination of exons in the TG gene by aberrant 
splicing results in an altered ability to transfer an iodophenox-
yl group from the donor site to the acceptor iodotyrosine. 

The 23 inactivating mutations that generates truncated 
proteins have been localized in exons 4 (p.Y107*, p.R140*) 7 
(p.R277*), 9 (p.R432*, p.S509*, p.Q611*, p.W618*, p.Q636*, 
p.Q692*), 10 (p.Q717*, p.Q752*, p.R768*, p.Q810*), 13 (p.C1032*) 
20 (p.W1418*), 22 (p.R1511*), 27 (p.Q1765*, p.Q1777*), 31 
(p.Y1903*) 37 (p.Q2142*), 40 (p.R2317*), 46 (p.Q2638*) and 
47 p.R2688*) of the TG gene (Table 1) [9,12,16,18,20,22,23,27-
29,30,32-34,36-38,40-42,45,47,49,51-53]. The p.R277X by 
p.R277* mutation is the most frequently reported mutation in 
the TG gene and affected individuals have either homozygous 
or compound heterozygous mutations. This mutation has been 
found in families from Brazil, Argentina, Galicia and France 
(Table 1) [12,16,18,22,23,28-30,33,34,40,42,53]. The functional 
consequences of p.R277X by p.R277* truncated protein are a 
complete loss of the central and carboxy-terminal hormonogenic 
domains and consequently, limited ability to generate thyroid 
hormone. However, p.R277X by p.R277* TG peptide retains its 
ability for T4 synthesis because it still harbors both the acceptor 
Tyr 5 and the donor Tyr 130. The p.R277X by p.R277* mutation 
was identifi ed in members of unrelated families with history 
of CH from Brazil, Argentina and France (Table 1) [9,16,23,32]. 
The p.R277X by p.R277* mutation is removed from the 
transcripts by exon skipping using an alternative splicing [9]. 
The elimination of mutated exon 22 in the pre-mRNA restores 
the reading frame allowing translation to reach the normal 
stop codon and results in an in-frame deletion of 57 amino acid 
residues [9]. The c.886C>T and c.4588C>T nonsense mutations 
occur in a CpG dinucleotide sequence and could be caused by 
deamination of a methylated cytosine resulting in a thymine. 
The CGA arginine codon is considered a hot spot for mutations 
in mammalian DNA. Truncated protein can be also caused by 
nucleotide deletions (Table 1) [14,20,27,35,36,42,49,53,56] 
and insertions or duplication (Table 1) [22,33,36,39] in the TG 
gene. Recently, genetic analysis using an Inverse-PCR (I-PCR) 
-based approach in three brothers of Turkish origin born from 
consanguineus parents and affected by CH, goiter and low 
levels of serum TG, showed a DNA inversion of 16,962 bp in the 

TG gene associated with two deleted regions at both sides of the 
inversion limits [43]. The inversion region includes the fi rst 9 
bp of exon 48, 1015 bp of intron 47, 191 bp of exon 47, 1523 bp of 
intron 46, 135 bp of exon 46 and the last 14,089 bp of intron 45 
[43]. The proximal deletion corresponds to 27 bp of TG intron 
45, while the distal deletion spans the last 230 bp of TG exon 48 
and the fi rst 588 bp of intergenic region downstream TG end 
[43]. The parents were heterozygous carriers of the complex 
rearrangement.

Sequencing analysis of the TG gene revealed sixteen 
missense mutations that involved wild-type Cys residue: 
p.C141S, p.C164Y, p.C175G, p.C707Y, p.C1058R, p.C1245R, 
p.C1262Y, p.C1474Y, p.C1491F, p.C1588F, p.C1878Y, p.C1885G, 
p.C1977S, p.C1981W, p.C1987Y and p.C2135Y (Table 1) 
[11,15,17,20-22,24,36,42,49,53]. The loss of Cys residues can 
eliminate disulfi de bonds and alter the normal conformational 
structure of the TG, possibly preventing the interaction of 
hormonogenic acceptor and donor sites. 

The fi rst report of a missense mutation in the ACHE-
homology domain of TG in humans was observed in a French 
family with two affected siblings with congenital goitrous 
hypothyroidism [14]. A fetal goiter was diagnosed in both 
patients by ultrasound at the sixth month of gestation 
[14]. Percutaneous umbilical vein blood sampling was 
carried out under ultrasound guidance showing severe fetal 
hypothyroidism. The sequencing analysis showed a new 
compound heterozygous mutations, the mutation p.R2223H 
located in the ACHE-homology domain is associated with a 
mutation at nucleotide position 1143 in exon 9 (p.362fsX382) 
[14]. Later 8 new missense mutations were reported in the ACHE 
homology domain: p.A2215D, p.G2300D, p.R2317Q, p.G2355V, 
p.G2356R, p.L2528Q, p.R2566W and p.W2666L (Table 1) [17,20-
22,24,26,28,29,42,49,50,53]. Functional analysis suggests that 
the p.A2215D mutation results in retention of the TG protein 
inside the ER and degradation via the proteasome system [28], 
as already observed in the cog/cog congenital goiter mouse and 
the WIC-rdw non-goitrous CH rat [81-83]. ER quality control 
system prevents misfolded TG protein export from ER to Golgi 
and consequently fails to be transported to the site of thyroid 
hormone synthesis [84]. These gives rise to a distention of 
ER, abnormality called as ER-Storage Disease (ERSD) [85]. 
Consequently, misfolded TG proteins are degraded by the ER-
associated degradation (ERAD) pathway.

Animal thyroglobulin mutations 

TG mutation have been described in Afrikander cattle [86], 
Dutch goats [87], cog/cog mouse [81], WIC-rdw rats [82,83] 
and Wistar Hannover GALAS rats [88].

The congenital goiter of Afrikander cattle is an autosomal 
recessive disease characterized by a TG synthesis defect [86]. The 
inactive mutation is a c.2146C>T in exon 9 that generates a stop 
codon at amino acid position 697 (p.R697X by p.R697*) [86]. 
The nonsense mutation is thus removed from the transcripts by 
exon skipping, and there is a preferential accumulation in the 
goiter of a TG mRNA lacking exon 9 [86]. The original reading 
frame is maintained in the alternative spliced mRNA, which, 
as it lacks the mutated exon, is translatable into a potentially 
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Table 1: Spectrum of thyroglobulin mutations.

Exon/Intron 
position Nucleotide position Amino acid position References

Exon 2 c.113G>A p.R19K [25,49]

Exon 3 c.262C>T p.R69W [49]

Intron 3 c.274+2T>G (g.IVS3+2T>G) Skipping of exon 3 [27,48,49]

Intron 3 c.275-3C>G (g.IVS3-3C>G) Skipping of exon 4 [8]

Exon 4 c.378C>A p.Y107* [42]

Exon 4 c.475C>T p.R140* [53]

Exon 5 c.479G>C p.C141S [53]

Exon 5 c.548G>A p.C164Y [22]

Exon 5 c.580T>G p.C175G [20]

Intron 5 c.638+1G>A (g.IVS5+1G>A) Skipping of exon 5 [19,40]

Intron 5 c.638+5G>A (g.IVS5+5G>A NA [53]

Intron 6 c.745+1G>A (g.IVS6 + 1G>A),

Skipping of exon 6 
or partially included 
by use of cryptic 5’ 
splice site

[46]

Exon 7 c.759_760insA (c.759dupA) p.L235Tfs*3 [22]

Exon 7 c.799C>T p.L248F [49]

Exon 7 c.886C>T p.R277*
[12,16,18,22,2
3,28,29,30,33,
34,40,42,53]

Exon 8 c.925A>G p.T290A [49]

Exon 8 c.967G>T p.G304C [37]

Exon 8 c.986A>C p.Q310P [20,40]

Exon 9 c.1143delC p.G362Gfs*21 [14]

Exon 9 c.1345_1346insC 
(c.1345dupC) p.P430Pfs*36 [33]

Exon 9 c.1348delT p.S431Pfs*29 [27]

Exon 9 c.1351C>T p.R432* [27,37,53]

Exon 9 c.1382C>T p.T442I [49]

Exon 9 c.1583C>A p.S509* [53]

Exon 9 c.1712delT p.L552Pfs*25 [27]

Exon 9 c.1888C>T p.Q611* [45]

Exon 9 c.1911G>A p.W618* [45]

Exon 9 c.1963C>T p.Q636* [51]

Exon 9 c.2115_2116insT 
(c.2115dupT) p.V687Cfs*2 [36]

Exon 9 c.2131C>T p.Q692* [20]

Exon 10 c.2177G>A p.C707Y [53]

Exon 10 c.2206C>T p.Q717* [34]

Exon 10 c.2222C>T p.T722M [49]

Exon 10 c.2276A>G p.Y740C [53]

Exon 10 c.2281C>T p.P742S [50]

Exon 10 c.2311C>T p.Q752* [53]

Exon 10 c.2359C>T p.R768* [33,41,42]

Exon 10 c.2485C>T p.Q810* [36]

Exon 10 c.2610G>T p.Q851H [40,53,54,55]

Exon 10 c.2687G>A p.R877Q [38]

Exon 10 c.2736delG p.R893Rfs*54 [42]

Intron 10 c.2762-1G>A (g.IVS10-1G>A) NA [20,40]

Exon 11 c.2969G>A p.S971I [20]

Exon 12 c.3022C>T p.R989C [20]

Exon 12 c.3035C>T p.P993L [20,49,50]

Exon 13 c.3149G>T p.W1031L [53]

Exon 13 c.3153T>A p.C1032* [49]

Exon 14 c.3229T>C p.C1058R [17,20]

Exon 15 c.3332C>G p.T1092R [49]

Exon 15 c.3416C>T p.S1120L [51]

Intron 15 c.3433+3_+6delGAGT 
(g.IVS15+3_+6delGAGT) NA [53]

Exon 17 c.3780delG p.G1241Gfs*3 [36]

Exon 17 c.3788_3789insT 
(c.3788dupT) p.I1244Ifs*3 [39]

Exon 17 c.3790T>C p.C1245R [11,15,17, 
20,24,36]

Exon 17 c.3808C>T p.R1251C [49]

Exon 17 c.3842G>A p.C1262Y [42]

Intron 19 c.4159+3_+4delAT(g.
IVS19+3_+4delAT)

Skipping of exon 19 
or partially included 
by use of cryptic 5’ 
splice site

[39]

Exon 20 c.4310G>A p.W1418* [20]

Exon 20 c.4378G>A p.V1441I [51]

Exon 21 c.4397G>A p.S1447N [20]

Exon 21 c.4478G>A p.C1474Y [53]

Exon 21 c.4493C>T p.T1479M [50]

Exon 22 c.4529G>T p.C1491F [36]

Exon 22 c.4537delG p.D1494Tfs*54 [20]

Exon 22 c.4575G>T p.Q1506H [49]

Exon 22 c.4588C>T p.R1511*  
Skipping of exon 22 [9,16,23,32]

Exon 22 c.4604A>G p.D1516G [49]

Exon 24 c.4820G>T p.C1588F [20]

Exon 24 c.4859C>T p.T1601M [50]

Exon 24 c.4930C>G p.Q1625E [53]

Intron 24 c.4932+1G>C 
(g.IVS24+1G>C) NA [20]

Exon 26 c.5071C>T p.R1672C [53]

Exon 26 c.5176C>T p.L1707F [49]

Exon 27 c.5299_5301delGAT p.D1748del [33]

Exon 27 c.5318C>A p.A1754D [49]

Exon 27 c.5350C>T p.Q1765* [27]

Exon 27 c.5386C>T p.Q1777* [32]

Exon 28 c.5466delA p.K1803Kfs*30 [42]

Intron 30 c.5686+1G>T 
(g.IVS30+1G>T) Skipping of exon 30 [10,13,26,28]

Intron 30 c.5686+1G>A 
(g.IVS30+1G>A) NA [20]

Intron 30 c.5686+1G>C 
(g.IVS30+1G>C) Skipping of exon 30 [44]

Exon 31 c.5766C>A p.Y1903* [47,49]

Exon 31 c.5690G>A p.C1878Y [20,21]

Exon 31 c.5791A>G p.I1912V [20,49]

Exon 31 c.5710T>G p.C1885G [49]

Exon 33 c.5986T>A p.C1977S [11,15,17,20]

Exon 33 c.6000C>G p.C1981W [42]

Exon 33 c.6017G>A p.C1987Y [20]

Exon 33 c.6047delA p.Q1997Rfs*2 [27]

Exon 34 c.6130C>T p.R2025C [51]

Intron 34 c.6200-1G>C (g.IVS34-1G>C) Skipping of exon 35 [16,40]

Intron 35 c.6262+1delG 
(g.IVS35+1delG) Skipping of exon 35 [30]

Exon 36 c.6360delC p.T2101Tfs*33 [53]
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goiter in the cog/cog mouse [81]. Direct sequencing of the 
cog TG cDNA showed a c.6848T>C mutation), generating the 
p.L2263P mutation in the mature cog TG protein [81]. Transient 
expression of the proteins indicated that cog TG exhibits a 
severe defect in the exit from the ER, whether the correction of 
this missense mutation restores the normal TG secretion [81].

The WIC-rdw rat is a hereditary hypothyroid variant 
derived from the Wistar-Imamichi strain [82,83]. In contrast 
to human patients and others animal models of congenital 
hypothyroidism, the WIC-rdw rat presents a hypoplastic 
thyroid gland, despite elevated circulating levels of TSH and 
reduced serum T3 and T4 [82,83]. The possibility that the 
mutant proteins may be cyto-toxic for thyroid growth and 
proliferation may be hypothesized [83]. Additional experiments 
are clearly needed to determine the mechanism by which WIC-
rdw rat presents a hypoplastic thyroid gland. The sequencing 
of the WIC-rdw rat TG cDNA revealed a c.6958G>C mutation 
[82,83]. The corresponding amino acid substitution in the 
ACHE-like domain of the WIC-rdw TG was p.G2300R [82,83]. 
As in the cog/cog mouse models, the WIC-rdw TG was retained 
inside the ER in cells. [82,83]. Experimental studies showed 
that when mutant TG was co-expressed with wild-type TG, the 
two proteins cross-dimerized, and secretion of WIC-rdw TG 
was partially restored. 

Finally, Wistar Hannover Galas rat showed two distinct 
spontaneous abnormalities: goiter and dwarfi sm [88]. The 
responsible mutation is a guanine to thymine transversion at 
the acceptor site of intron 6 of the TG gene (749-1G>T) that 
induces a complete missing of exon 7 from the TG transcript 
[88]. Interestingly, homozygotes manifested both dwarfi sm 
and goiter, while heterozygotes had only a goiter, suggesting 
that the mutant phenotype is inherited as an autosomal semi-
dominant trait [88].

Perspectives and Conclusions

Recent technological advances in instrumentation, computer 
hardware and software for next-generation sequencing (NGS) 
platforms [89] have led to the identifi cation of new mutations 
in the TG gene [47-51,53]. The new technologies allow also the 
identifi cation in the same patient with CH the coexistence of 
multiple mutations in different thyroid genes; for instances 
mutations in TG associated with mutations in DUOX2 [47,50,53] 
or TPO [53] or TSHR [48].

In the present paper, we discussed remarkable advances in 
the understanding of the pathophysiology of the CH associated 
with TG defects as well as in the identifi cation of the mutations 
responsible for the disease. However, the impact of several 
mutations on the development of this disorder remains to be 
elucidated. The introduction of NGS approaches, characterized 
by a marked increase in the yield of DNA sequencing and 
the ability to analyze large populations will probably allow a 
change in the traditional understanding of the molecular and 
genetic bases of CH and the genotype-phenotype correlation. 
The identifi cation of the coexistence of multiple mutations 
in the same gene or in different thyroid specifi c genes could 
contribute to the accurate diagnosis and classifi cation of the 
defects. Moreover, the massive identifi cation of mutations 

functional protein and preexisting as a minor mRNA species in 
normal animals [86].

An inbred Dutch goat strain with congenital hypothyroidism 
and goiter was extensively studied by de Vijlder et al [87]. The 
hereditary TG synthesis defect in Dutch goats is caused by a 
c.945C>G that changes a triplet TAC coding for Tyr in exon 8 
into a triplet TAG giving a stop codon (p.Y296X by p.Y296*) 
[87].

The cog/cog trait originally appeared as a spontaneous 
autosomal recessive phenotype in the inbred AKR/J strain 
of mouse [81]. Congenital hypothyroidism with goiter was 
observed in the cog/cog mouse, suggesting a defect of the 
TG synthesis [81]. Kim et al. identifi ed a missense mutation, 
contained within the ACHE-like domain of the TG coding 
sequence, as the molecular basis for congenital hypothyroid 

Exon 36 c.6391_6394delTTGT p.L2112Rfs*21 [49]

Exon 37 c.6461G>A p.C2135Y [20]

Exon 37 c.6481C>T p.Q2142* [28]

Intron 37 c.6563-2A>G  (g.IVS37-2A>G) NA [36]

Exon 38 c.6605C>G p.P2183R [42]

Exon 38 c.6701C>A p.A2215D [22,26,28, 
29,42]

Exon 38 c.6725G>A p.R2223H [14,29,31]

Intron 39 c.6876+1delG 
(g.IVS39+1delG) NA [49]

Exon 40 c.6956G>A p.G2300D [20]

Exon 40 c.7006C>T p.R2317* [29,38,42,52]

Exon 40 c.7007G>A p.R2317Q [20,21]

Intron 40 c.7036+2T>A 
(g.IVS40+2T>A) Skipping of exon 40 [46]

Exon 41 c.7121G>T p.G2355V [20]

Exon 41 c.7123G>A p.G2356R [17,20,24]

Exon 44 c.7640T>A p.L2528Q [53]

Exon 44 c.7753C>T p.R2566W [49,50]

Intron 45 c.7862+2T>A 
(g.IVS45+2T>A) NA [20]

Exon 46 c.7969C>T p.Q2638* [20]

Intron 46 c.7998-1G>A (g.IVS46-1G>A) NA [28]

Exon 47 c.8054G>T p.W2666L [53]

Exon 47 c.8119C>T p.R2688* [47,49]

Deletion in the 5' region of the TG gene that involves promoter 
region and 11 fi rst exons. [56]

Deletion of 9,908 bp that includes exon 45 [35]

DNA inversion of 16,962 bp from exon 48 to intron 45 in the TG 
gene associated with two deleted regions at both sides of the 
inversion limits.

[43]

The nucleotide position is designated according to TG mRNA reference sequenc-
es reported in National Center for Biotechnology Information (NCBI), accession 
number: NM_ 003235.4. The A of the ATG of the initiator methionine codon is de-
noted nucleotide +1. The amino acid positions are numbered after subtracting the 
19-amino acid signal peptide. Intronic nucleotides located upstream of the exon 
have negative numbering, while those located downstream have positive number-
ing. Splicing mutations are annotated by using cDNA sequences and old nomen-
clature (g.IVS) is included. Frameshifting mutations are designated by “fs” after 
a description of the fi rst amino acid affected by the nucleotide change (insertion 
or deletion) and the stop codon with “*”, followed by indication of the length of 
the shifted open reading frame from the fi rst affected amino acid to the new stop 
codon. NA, Not Available.
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could be of greatly importance in the near future, since 
preimplantation of genetic diagnosis will be available for 
families in which the genetic defects responsible for the CH 
have been previously identifi ed.
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