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Introduction                

The Fermat’s theorem is one of the most popular theorems 
in mathematics. Its condition is formulated simply at the school 
arithmetic level. However, many mathematicians and laymen 
have been looking for the proof of the theorem for more than 
three hundred years. This theorem says that at the same time 
there are no nonzero integers “a”, “b”, “c”, “n”, for n > 2, 
which would satisfy the equation: 

an+bn=cn,                 (1).

It was proved in 1994 by A. Wiles and colleagues, [1]. The 
proposed proof is very good for understanding in a narrow 
mathematical community. However, we can say that not all 
specialists in mathematics understand this. Simplifi cation is 
necessary for a wider range of stakeholders.

For this reason, in particular, an analysis was made and an 
article was published, [2], in which it was shown that equations 
with square roots and roots with any degrees from differences 
can be broken/decomposed up into different terms. This is 
equation (143) in this article. It was impossible to neglect the 
attempt to connect the obtained results with the verifi cation of 
the Fermat’s theorem.

Mathematical modeling in biotechnology, [2 and literature 
in this article] changed its course since last 3–4 decades with 
a shift toward situation-specifi c, complex treatments as 
opposed to causal, mechanistic and general analyses as in the 
past. Common patterns/theories of a cell population growth 
do not receive much emphasis unlike in the past, specifi cally 
the well-known variations from Monod’s model. On the other 
hand, development of fermentation technology focused only 
on improving fermenter technology and automation. Thus, the 
mathematical and physical (biological) problems of microbial 
growth and biosynthesis, both in the general case as well as in 
specifi c applications, remained unattended too.

The author of this article published a preprint, [3], with his 
own proof of FLT, which at the time of the writing has not 
yet received serious objections to the presented proof of FLT, 
despite the fairly wide distribution of this preprint among the 
professional community of “pure mathematics”.

Some details for Fermat’s Last Theorem

2.1 Background information

2.1.1 The Equation (143) from [2], 
which was used as the basis for the proof: 
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  a = (cn-bn)(1/n) = (ε/γ)(1/n)[(cn)(1/n) Φ(n-1)/n – φ(n-1)/n ((bn)/γ)1/n],              (2)                               

Naturally, the inverse calculation of “b” through “a” is also 
possible.

2.1.2 «a», «b», «c», «n» are integers for the case 
considered in this article, and a = pA, b = pB, c = pC, where “p” 
is any other integer.  The Pythagorean primitive triples “A”, 
“B”, “C” are the minimum integers greater than 1 that satisfy 
to the condition (1), as well as the numbers “a”, “b” and “c”, 
moreover, a < b and c > b;  

2.1.3 C0=Cn/2 is the ratio of Cn to the number Φ2, where 
Φ=1/φ=1/0.6180339…=1.6180339…   

2.1.4 γA= An/C0 ,                   (3)

and

γB= Bn/C0               (4)                                                    

Here the indices “A” or “B” with the numbers “” indicate 
through which parameter this “” is calculated. Accordingly, 
for the “A” value, the calculation was carried out through the 
parameter “A” for the further purpose of the “B” value study 
and vice versa. Naturally, it is possible to use «a», «b», «c» 
to determine a and b;                                                

2.1.5 =-2                     (5)                                   

The values obtained in accordance with paragraph 2.1.4. are 
used for calculations in Equation (5).

2.1.6 The calculation results for paragraphs 2.1.2.-2.1.5. 
shown in the Table 1.

2.2 Solution of the Equation (2) for different n

2.2.1 Let the fi rst term on the right of the Equation (2) be 
«L» and the second term on the equation be «M».   

i.e.,    LA=(n-n-2A)
1/nC,                                                      (6),

and LB=(n-n-2B)
1/nC,                                                       (7).

The Equations (6) and (7) were obtained at simplifying 
of the fi rst term in the right-hand side of equation (2). 
Calculations are made through “A” or “B” upon receipt of 
values corresponding to “B” or “A”. That is, the Equation (3) 
is used in the analysis of “B” values, and the Equation (4) is 
used in the analysis of “A” values. Accordingly, the values with 
the corresponding indices “LA” and/or “LB” in the form of the 
Equations (6) and (7)  were obtained after simplifi cation.

The Equations for the quantities “MA” and “MB” were also 
obtained similarly to the Equations (6) and (7):

MA= (n-2/A–n)1/nA,                       (8),

and   MB=(n-2/B–n)1/nB,               (9).

2.2.2 The joint solution of the Equations (6), (8) and 
(7), (9) by equating the factors “A” and “B” in each of the 
corresponding equations allows us to write the following 
expressions:

ΦnCn/LA
n - φnAn/MA

n=1,               (10),

and 

ΦnCn/LB
n  - φnBn/MB

n=1,               (11).           

2.2.3 The Equations (10) and (11) can be represented as 
follows:

(n/2Cn/2/LA
n/2 - n/2An/2/MA

n/2) (n/2Cn/2/LA
n/2 + n/2An/2/MA

n/2)=1,      
            (12),

and (Φn/2Cn/2/LB
n/2-φn/2Bn/2/MB

n/2) (n/2Cn/2/LB
n/2+ n/2Bn/2/

MB
n/2)=1,                            (13).

2.2.4 The solution of the Equations (12) and (13) for n = 2 
and other values completely excludes Φ and , if we take into 
account the Equations from sections 2.1.1.-2.1.4. and 2.2.1-
2.2.2. This allows us to express the Equations (12) and (13) only 
by the integers “A”, “B” and “C” according to the Equations:

(k-
A k+

A)={C/[(C2-A2)1/2]-A/[(C2-A2)1/2]}{C/[(C2-A2)1/2]+A/
[(C2-A2)1/2]}=1,                    (14).  

and                     

(k-
B k+

B)={C/[(C2-B2)1/2]-B/[(C2-B2)1/2]}{C/[(C2-B2)1/2]+B/
[(C2-B2)1/2]}=1,        (15).

2.2.4.1 It is obvious, the values “k-” and “k+” will belong to 
rational fractions or integers if “A”, “B” and “C” are integers. 
Moreover, k- < 1 and k+ > 1. This is shown in Table 2. 

Thus, 

k-
B =1/A,              (16),

and 

k+
B= A,                 (17),   

if the primitive triples “A”, “B” and “C” are defi ned by the 
Equations:

B=(A2-1)/2,             (18),

and

C=(A2+1)/2,             (19),

for example.

2.2.4.2 The difference between “L” and “M” gives the 
integers “A” and “B”, respectively, for pairs of numbers “LB” 
- “MB” and “LA” - “MA”. It can be seen in the Table 2.

2.2.5 The solution of equations (12) and (13) for n = 3 and 
other conditions n> 2 gives irrational values, if we will take 
into account the Equations from sections 2.1.1.-2.1.4. and 2.2.1-
2.2.2., and this prohibits the possibility of obtaining solutions 
that consist of integers for the given cases, see Table 1.

Practical Application and Evidence in the Nature

The Equation (18) in the article [2], devoted to the binary 
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doubling in microbial populations at a slow growth phase, is 
the initial equation for the consideration in this article:

K’= (Xp-XLim)Xst
Lim               (20),

where K ’is a constant; Xp is a certain value equal to the 
asymptote during population growth in the decaying growth 
phase; XLim is the number of cells at the interface between 
the exponential phase of population growth and the phase of 
damped growth; Xst

Lim - the number of non-dividing cells at 
the age of 0 cell cycle. The main premise of this microorganism 
growth model (IMMD) is the assumption that the total number 
of cells, X, is always determined by the sum of non-dividing 
cells, Xst, and dividing cells, Xdiv:

X=Xst+Xdiv,             (21).

An analysis of the Equations (20) and (21) according to the 
scheme in paragraph 2 of this article shows that if X values 
belong to the set of integers, then Xst and Xdiv values can belong 

to the set of irrational numbers. It is obviously for X, if that 
value is expressed by integers, then this number can be the 
square of another integer, C = X1/2. The numbers Xst and Xdiv can 
have irrational values A=(Xst)1/2 and B=(Xdiv)1/2, except for the 
Final value, when XFinal = Xst

Final and XdivFinal=0, [2]. The biological 
signifi cance of this phenomenon can only be explained by the 
fact that there is no sharp boundary between the properties of 
Xst and Xdiv cells, which are close in the age of its cell cycles. 
This refers to the situation if 2 daughter cells have just come 
from one parent cell and one of them has entered into the 
Xdiv state through some small time interval compared to the 
doubling time, td, and the second has remained in the Xst state. 

But, it is obvious, the Equations (12) and (13) can also have 
integer solutions according to paragraph 2. This is acceptable 
for the case if we assume that C = X1/2 and B = (Xnew)1/2, where 
the Xnew values should be considered as “new” cells, [2], which 
were formed after some fi xed reference time. For example, after 
a time corresponding to the time for the boundary between 
the exponential growth phase and the slow growth phase, Lim. 

Table 1: The parameters of the Equation (2), which are determined for An + Bn = Cn. 

#
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n C B A Cn Bn An X0 γB γA εB=ΦγB-φγ2

B εA=ΦγA-φγ2
A εB/γB εA/γA A(Eq.(2)) B(Eq.(2))

1 2 5 4 3 25 16 9 9.55 1.68 0.94 0.98 0.98 0.58 1.04 3 4
2 2 13 12 5 169 144 25 64.55 2.23 0.39 0.53 0.53 0.24 1.38 5 12
3 2 25 24 7 625 576 49 238.73 2.41 0.21 0.31 0.31 0.13 1.49 7 24
4 2 41 40 9 1681 1600 81 642.08 2.49 0.13 0.19 0.19 0.08 1.54 9 40
5 2 61 60 11 3721 3600 121 1421.30 2.53 0.09 0.13 0.13 0.05 1.57 11 60
6 2 85 84 13 7225 7056 169 2759.70 2.56 0.06 0.10 0.10 0.04 1.58 13 84
7 2 113 112 15 12769 12544 225 4877.32 2.57 0.05 0.07 0.07 0.03 1.59 15 112
8 2 145 144 17 21025 20736 289 8030.84 2.58 0.04 0.06 0.06 0.02 1.60 17 144
9 2 89 80 39 7921 6400 1521 3025.6 2.12 0.50 0.66 0.66 0.31 1.31 39 80

10 2 17 15 8 289 225 64 110.39 2.04 0.58 0.73 0.73 0.36 1.26 8 15
11 2 85 77 36 7225 5929 1296 2759.70 2.15 0.47 0.62 0.62 0.29 1.33 36 77
12 2 53 45 28 2809 2025 784 1072.94 1.89 0.73 0.85 0.85 0.45 1.17 28 45
13 2 65 63 16 4225 3969 256 1613.81 2.46 0.16 0.24 0.24 0.10 1.52 16 63
14 1 3 2 1 3 2 1 1.15 1.75 0.87 0.94 0.94 0.54 1.08 1 2
15 3 11 7 3 1331 343 27 508.40 0.67 0.05 0.81 0.08 1.20 1.59 9.96 10.93
16 2 10 8 6 100 64 36 38.20 1.68 0.94 0.98 0.98 0.58 1.04 6 8

Columns 3 and 4 were used to calculate all parameters for a given «C» value in the column 2. Bold in columns 15 and 16 are the roots, which were obtained by solving the 
Equation (2) for a given «C» value from the 2nd column. Lines 1-15 correspond to p = 1, line 16 
corresponds p = 2.

Table 2: Parameters L, M, k- and k + for the corresponding data A, B, C and n in Table 1.

#
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n C B A A(Eq.(2)) B(Eq.(2)) LB MB k-

B k+
B LA MA k-

A k+
A LB-MB LA-MA

1 2 5 4 3 3 4 4.85 1.85 0.33 3.00 6.47 2.47 0.50 2.00 3 4
2 2 13 12 5 5 12 8.09 3.09 0.20 5.00 19.42 7.42 0.67 1.50 5 12
3 2 25 24 7 7 24 11.33 4.33 0.14 7.00 38.83 14.83 0.75 1.33 7 24
4 2 41 40 9 9 40 c14.56 5.56 0.11 9.00 64.72 24.72 0.80 1.25 9 40
5 2 61 60 11 11 60 17.80 6.80 0.09 11.00 97.08 37.08 0.83 1.20 11 60
6 2 85 84 13 13 84 21.03 8.03 0.08 13.00 135.91 51.91 0.86 1.17 13 84
7 2 113 112 15 15 112 24.27 9.27 0.07 15.00 181.22 69.22 0.88 1.14 15 112
8 2 145 144 17 17 144 27.51 10.51 0.06 17.00 233.00 89.00 0.89 1.12 17 144
9 2 89 80 39 39 80 63.10 24.10 0.23 4.33 129.44 49.44 0.63 1.60 39 80

10 2 17 15 8 8 15 12.94 4.94 0.25 4.00 24.27 9.27 0.60 1.67 8 15
11 2 85 77 36 36 77 58.25 22.25 0.22 4.50 124.59 47.59 0.64 1.57 36 77
12 2 53 45 28 28 45 45.30 17.30 0.29 3.50 72.81 27.81 0.56 1.80 28 45
13 2 65 63 16 16 63 25.89 9.89 0.13 8.00 101.94 38.94 0.78 1.29 16 63
14 1 3 2 1 1 2 1.62 0.62 1.00 5.00 3.24 1.24 1.41 2.83 1 2
15 3 11 7 3 9.96 10.93 16.12 6.16 0.13 0.57 17.68 6.75 0.22 0.39 9.96 10.93
16 2 10 8 6 6 8 9.71 3.71 0.33 3.00 12.94 4.94 0.50 2.00 6 8
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Accordingly, cells, which were already existing in a population 
at the given time, Lim , are “old” cells, Xold, [2]. Moreover, A = 
(Xold)1/2, where A values is also an integer, like «C» and «B» 
values. At  = Final, both components, Xnew or Xold, cannot be 
equal to 0.

It’s obvious that:

X=Xold+Xnew,                                                                              (22).

Thus, the equality is true:

(Xst+Xdiv)/(Xold+Xnew) = 1,                                                                 (23).

Indeed, the Equations (24) - (27) below gives the solutions 
of the Equation (23):

X=Xp-(Xp-XLim)e[-(m/a)(-Lim )],                                                             (24),  

Xdiv=X-Xst= X-K’/(Xp-X),                                                                (25),

Xold=XLime[-(m/a)(-Lim)],                                                                    (26),

Xnew=Xp(1-e[-(m/a)(-τLim)]),                                                              (27),

where «m» and «a» values are the maintenance energy 
and trophic coeffi cient (it is not the same as the «a» value 
used above in the Equations (1) and (2)). The Equations (26) 
and (27) were fi rstly shown in [4], however, with an incorrect 
interpretation like Xdiv and Xst, respectively.

Taking into account all the equations of this article and 
article [2], it was shown that the development of populations 
can be determined by the Fermat’s theorem and the Pythagorean 
Theorem, as a special case of Fermat’s theorem. The reason is: 
there are no other possibilities for the Nature, except n = 2.

Conclusion

The Fermat’s theorem and Pythagorean Theorem can be 
used by a relatively simple algebraic way to analyze S-shaped 
growth curves of microorganisms.

Application in practical biology for describing of 
population growth was proposed to show essential features in 
interpretations of belonging to different groups of cells.
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