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Nanomechanical sensors based on atomic force micros-
cope cantilevers

Binnig and coworkers [15] developed the fi rst Atomic Force 
Microscope (AFM) in 1986. The instrument consists in a tip 
that scans the surface of the sample. The tip is fi xed at the 
end of a soft cantilever that defl ects during the scan according 
to the sample’s topography. The vertical movements of the 
cantilever are recorded with an astonishing precision (up to 
0.1 Å) and allow the reconstruction of 3D topography of the 
sample. Since its fi rst iteration, the instrument improved and 
is now used in practically all research areas, ranging from 
chemistry to medicine [16,17]. Nowadays, an AFM can image 
biological samples in almost physiological environment at an 
atomic resolution, detect interaction forces between single 
molecules [18,19] or assess the mechanical properties of 
single bacteria with an unpreceded resolution. The biomedical 
application of cantilever-based sensors, in particular in the 
fi eld of microbiology, is broad and covers different topics. 
It allows to precisely analyze the mechanical properties of a 
specifi c cell area and to record bacterial division at a nanometric 
scale [20,21]. Indeed, the microbial cells can be studied both 
by probing their mechanical properties under the AFM tip or 
by having them directly attached onto the cantilever or even 
inside it by the means of embedded channels [22-24].

In 2013, Longo and colleagues developed a technique, 
referred to as nanomotion detection, where the microorganism 
of interest is attached onto an AFM cantilever and the 
cantilever oscillations are monitored as a function of time 
and of different chemicals [25]. The authors demonstrated 
that living organisms induce nanometric scale oscillations of 

Introduction

The antimicrobial resistance is the ability of bacteria 
and fungi to proliferate even in presence of antibiotic or 
antimycotic drugs [1]. In the last twenty years we have been 
witnessing a colossal increase in the antimicrobial resistance 
mainly due to the abuse and misuse of these compounds [2]. 
Although nowadays the use of antibiotics and antimycotics is 
more strictly regulated, antimicrobial treatment sometimes 
starts before a complete identifi cation of the infectious agent 
[3-5]. The diagnostic tools currently approved by the Food 
and Drug Administration (FDA) or European Medicine Agency 
(EMA) (and the other region-specifi c regulatory agencies) for 
Antimicrobial Susceptibility Test (AST) are able to provide 
results in a relatively slow time that can last from one day 
up to a month [6]. This lag time is often too long for patients 
suffering from rapidly evolving infections such as sepsis [7]. 
This is one of the main reasons why in such cases the antibiotic 
treatment is given to the patient before receiving AST results. 
Unfortunately, broad spectrum treatments may lead to 
resistant strains [8]. 

To prevent the increase of resistant strains, numerous 
groups developed various nanomechanical devices to perform 
rapid ASTs [9,10]. MEMS used in biomedical applications 
gained attention due to their broad applicability, scalability, 
and reliability [11-14]. Lab-on-a-chip and cantilever-based 
detection system are very promising and could lead in the next 
future to low cost, easy-to-use and pocket-sized AST devices. 
Moreover, silicon-based sensors are nowadays produced at a 
reasonable cost using fast standardized fabrication methods. 
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the cantilever that immediately stop when the organism dies. 
Remarkably, this study revealed that the method is well suited 
to conduct rapid ASTs: reliable results being delivered in a 
timeframe of minutes to hours. Figure 1 represents the working 
principle of the method as well an example of a nanomotion 
experiment performed on Staphylococcus aureus. Briefl y, the 
microorganism of interest is attached onto the cantilever and 
the oscillations of the lever are recorded for a minimum of 20 
min. In a second step, the microorganism is exposed to the 
drug to be tested and the viability of the cells is assessed by 
monitoring the cantilever oscillations. Taken all the steps 
together, a typical experiment lasts for 1 to 3 hours, decreasing 
a lot the time delay of the AST. 

Double blind experiments on blood culture pellets, using 
the nanomotion technique, demonstrated an accuracy above 
95% when analyzing resistant bacteria obtained from patient 
suffering of infections [26]. This is one article were the accuracy 
of the technique was checked in a real situation, using samples 
obtained from patients in order to test the technique outside 
the academic laboratory, even though still handled by experts 
in the fi eld.

Therefore, the nanomotion detection technique is extremely 

promising and its use as diagnostic tool is foreseeable in the 
close future. 

By using the very same technique several studies 
demonstrated that all of the so far explored living organisms 
oscillate at a nanometric scale as long they are alive. Indeed, 
this novel method was successfully tested on dozens of 
organisms such as bacteria, yeast [27], vegetal and mammalian 
cells [28]. Applied on bacteria, the technique was proven 
to be independent on the gram staining, the motility, or the 
replication rate of the organism [29-31].

Similar techniques that use micro or nano-fabricated device 
to detect the presence of several kind of different compounds, 
or living organisms have been developed [32]. Their potential 
application covers several scientifi c area and it is particularly 
well suited for biomedical applications [33].

The main drawback of AFM-cantilever based AST is 
probably related to the need to attach the organism of interest 
onto a lever with a good reliability. The compounds used to 
accomplish this task are usually not widely usable in terms of 
applicability to several different strain or species. Indeed, as for 
common diagnostic AST used nowadays in clinics the culture 
medium changes (for instance: liquids and solids containing 

Figure 1: Working principle of the nanomotion based AST. a) An AFM cantilever is loaded with the organism of interest (red dots) and its oscillations (or more precisely the 
variance of the oscillations) are compared to those recorded after the exposure to the antibiotic (grey). The difference in variance of both signals refl ects the effi  ciency of 
the tested drug (red and gray columns). b) An example of a cantilever with Staphylococcus aureus attached on it. c) Nanomotion pattern of S. aureus before (red) and after 
exposure to 50 mg/L of ampicillin (black). 
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different nutrients) among different microorganisms, the 
attaching compound (needed to load the cells on the lever) 
should be carefully checked or tested to ensure that the 
microorganism, obtained from the patient, is correctly bound 
and identifi ed. Therefore few biological and chemical products 
have been testing to load microorganisms, such as bacteria 
and yeasts, on cantilevers to ensure an suffi cient loading 
capacity. For instance, some of those compounds may lead to 
toxic or metabolic-impairing effect on few microorganisms 
and thus biasing their reaction to antibiotics and antimycotics. 
Based on the data available from the literature, some of the 
aforementioned compounds are more suitable for bacteria 
such as glutaraldehyde, APTES, poly-L-lysine and fi bronectin 
whereas others such as Concanavalin-A more for fungi and 
yeasts. Another potential issue that may limit the usability of 
this type of AST techniques as diagnostic tool is the relative 
complexity in the required steps needed to fi nally have an 
acceptable number of viable microorganisms on the cantilever. 
However, this last drawback can be overcome by developing 
automatized systems able to help the fi nal users throughout 
complex steps.

The potential of these techniques pertains to the fact that 
due to their nano-scale sizes they offer the possibility to study 
microbial activity down to few or even single cell level [34-44].

Conclusion 

In this work we introduce a non-exhaustive view of a 
novel AST technique to rapidly and accurately detect microbial 
resistance to antibiotics. Hopefully, in a close future, this 
method will lead to fast, robust and easy-to-use devices. The 
antibiotic resistance is indeed a worldwide treat that should be 
tackled as fast as possible and a credible option to achieve this 
goal is the use of rapid ASTs. Such devices could reduce the use 
of large spectrum antibiotics thus limiting the development of 
resistant strains. 
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