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Abstract

Molecularly imprinted polymer (MIP) nanoparticles, commonly referred to as ‘plastic antibodies’ or 
synthetic receptors, are polymeric materials with strong affi  nity and selectivity for a particular chemical 
target. MIPs are regularly produced for use in sensors for monitoring food quality and environmental 
pollutants, and in the design of robust and affordable replacements for biological receptors, enzymes 
and antibodies in drug testing and assays. More recently the easy production of MIP nanoparticles 
has also permitted research relating to possible in vivo applications, primarily in drug delivery systems, 
toxin sequestration and pathogen inhibition. The strength of the interaction between the target and the 
polymer binding site is dependent on the particular monomers selected in synthesis of the MIP, and the 
relative concentrations of these in the pre-polymerization mixture. While computational approaches 
have been used to aid in MIP design previously, the methods adopted are often slow and simplistic, 
centring on observations of the template structure with a couple of functional monomers presumed to be 
appropriate. We present here an automated method of rapidly screening numerous functional monomers 
and effectively determining appropriate monomer ratios, while accounting for spatial discrimination 
in selection and dynamic parameters in optimization. Example are then given of effect MIP synthesis 
resulting from the protocol, and the benefi ts of this approach over competing methods are discussed.
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Introduction

While computational methods have long been used in 
the design of synthetic receptors, a comprehensive approach 
has largely been unavailable for use as a standard protocol 
in the production of high affi nity biomimetic materials. 
Molecularly imprinted polymer (MIP) synthetic receptors or 
‘plastic antibodies’ are prepared by the formation of a cross-
linked polymer in the presence of a molecular template. The 
self-assembly of functional monomers with complementary 
functional groups to those of the template results in formation 
of a pre-polymerization complex, which is stabilized by cross-
linking during polymer formation. Appropriate selection of 
functional monomers with strong interaction energies with 
the template will favour the associated state, resulting in the 
formation of MIPs with high affi nity and specifi city for the 
target. In the absence of a rational approach to the design 
of MIPs, monomer selection is often made on the basis of 
previous experience or chemical intuition; in many cases 
methacrylic acid is used as the sole functional monomer due 
to its importance in the history of molecular imprinting. 
Laboratory-based approaches to the optimization of monomer 

compositions centre on combinatorial synthesis and screening 
[1,2], an approach limited by the large number of different 
polymers required to account for the many potentially suitable 
monomers. 

With thousands of functional monomers commercially 
available or readily synthesized, a more rational approach 
to monomer selection was obviously required for further 
advancement of the fi eld. The literature provides numerous 
examples where researchers have investigated the strength of 
monomer-template interactions through the use of molecular 
mechanics (MM) [3-6], molecular dynamics (MD) [7-9], and 
quantum mechanics (QM) [10,11], based molecular modelling 
techniques, but these are still limited by the sequential 
screening of each monomer manually. 

We have developed a protocol utilizing a molecular 
mechanics/molecular dynamics approach to the automated 
screening of a library of candidate functional monomers for 
their interaction with a chosen template. For this purpose, 
we have used a commercial suite of software (SYBYL® from 
Tripos Inc.) that uses a small library of commercially available 
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monomers. The validation of the described computational 
protocol as a means of rapid and reliable MIP design is provided 
by reference to many published examples of high-affi nity MIPs 
for a diverse range of targets prepared according to this design 
strategy.

Incentives 

The foundational principle of computational MIP design 
is that the stability of the template-monomer complex is 
directly related to the quality of imprinted sites created in the 
polymer after cross-linking. Much of the contemporary use of 
molecular modelling in the design of MIPs therefore is centred 
on the equation:

( )C T ME E E E   
               (1)

 Where EC, ET and EM are the lowest calculable energies of 
the template-monomer complex, template and monomer 
respectively. Comparison of the different values of ΔE gives 
an indication of the relative stability of different components 
in the system, and thus provides an appropriate guide to the 
selection of an appropriate monomer [12-14], to fi nd the most 
suitable template-monomer ratio [15-17], or both [18-20]. 

This method has become popular along with the use of QM-
based (predominantly DFT) techniques in MIP design as a 
result of advances in hardware making greater computer power 
available. However, this approach is still time consuming 
and computationally demanding, and QM is for this reason 
associated with the screening of a relatively small number of 
monomers (typically fi ve or fewer). There are rare exceptions 
to this in which 20 or more functional monomers, along with a 
number of cross-linkers, have been ranked against a particular 
template [21-23], but the time presumably invested in this 
does not lend to this being an appropriate general model of 
MIP design. 

While QM has advantages in accuracy over the alternatives 
which makes it desirable in the comparison of different 
polymerization constituents, either directly via the above 
equation, or by frontier orbital analysis [24-26], which can be 
used as an indicator of kinetic stability [27], MM and MD have 
the power to perform hundreds of tasks simultaneously, such 
as the simulation of pre-polymerization systems consisting of 
thousands of molecules, and provide an analysis of interactions 
occurring between molecules over many nanoseconds [28]. 
These models are also continually being revisited, often with 
the adoption of techniques that are new to MIP design, such as 
analysis by determination of the radial distribution functions 
(RDFs) of atoms likely to be involved in hydrogen bond 
formation. RDF methods provide the distances between atoms 
and allows selection of appropriate chemical components in the 
polymerization system (monomers, solvents, etc.), when used 
as a tool in predicting the likelihood of successful template 
complexation and polymer synthesis [29-31].

The protocol described herein began development in 2000 
[32], and an early form of the procedure was employed for the 
fi rst time to design MIPs for creatinine [33], ephedrine [34], 
and microcystin-LR [35]. Dozens of papers have since been 
published describing the use of this protocol for a broad range 

of templates, with the technique being continually modifi ed to 
provide a reliable method of designing high affi nity imprinted 
polymers. Here can be seen the incremental advancements 
describing how molecular modelling techniques can be used 
to rapidly screen large databases of functional monomers 
in order to identify suitable candidate monomers for MIP 
preparation. The computational time and resources required 
for performing these MM and MD calculations of monomer-
template interactions are modest and can produce results 
within a few hours. The method represents a generic procedure 
for the selection of monomer mixtures for the imprinting of 
virtually any template. 

Experimental

All calculations and procedures were carried out on a 
desktop PC running RHEL 3.0 or later (Linux platform), 
executing the software package SYBYL 7.3 (Tripos Inc.). The 
protocol described was developed using the SYBYL software 
but can be adapted for application in other programs. Standard 
procedures are followed regarding preparation of the selected 
template, which may be either the whole molecule (as is typical 
in smaller structures) or an appropriate epitope may be used to 
represent the binding region of a biochemical macromolecule. 
These structures are often obtained from online sources such 
as PubChem [36], ZINC [37,38], or RCSB PDB [39], when 
possible to ensure the correct appropriate template geometries 
are presented in screening.

Automatic monomer screening

Templates constructed manually may be minimized and 
processed by simulated annealing using any available force 
fi eld, but for greater compatibility with the LeapFrog protocol 
the Tripos force fi eld and Gasteiger-Hückel charges are 
preferred. All structures must be available in a mol2 fi le format.

The monomer library can be constructed by a number of 
approaches. Using the SYBYL software a large number of 
molecules can be saved under one fi le name or retained in 
one folder easily, facilitating the writing of a script which 
sequentially loads a monomer, records the total internal 
energy of the monomer and template in isolation, forms a 
complex by energy minimization, and records the energy of 
the new arrangement before restarting with a new monomer. 
This process can be easily automated using a simple algorithm 
written in SYBYL Programming Language (SPL), and can be 
easily adapted for use in other software. Here however we 
emphasize the benefi ts of adapting LeapFrog for use in the 
screening process; Leapfrog includes a function to add an 
observed structure to a database (‘add fragments’), or a large 
number of monomer can be automatically added with simple 
SPL algorithms (An example script is given in Appendix 1). 

Once the library is established the screening can be initiated 
by launching the Leapfrog program. Using the ‘dream’ mode 
allows greater freedom to modify parameters and ensuring 
the ‘calculate’ option is enabled and set to ‘all atoms’ allows 
observation of the whole template as opposed to the binding 
cavity of a macromolecule. In the ‘tradeoff’ between quality 
and variety the former must be maximized in the ‘tradeoff’ 

https://www.peertechz.com/uploads/art_addfiles_1235.rar
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dialogue, including removal of ‘protected’ atoms and exclusion 
of desolvation and chemical synthesis effects on the binding 
energy. Inclusion of hydrogen bond energy must also be 
requested via the tailored ‘energy startup’ options. 

For effective adaption of Leapfrog the ‘relative move 
frequencies’ must also be modifi ed from their default settings. 
This largely involves simplifying the relatively sophisticated 
program, which builds idealized receptor binding compounds 
from libraries of simple synthon equivalents. By removing the 
option to form bonds between these simple structures in the 
cavity (i.e. around the template) an effective screening protocol 
can be developed. The frequencies of all actions are therefore set 
as zero, except for ‘new’, ‘twist’, ‘save’ and ‘weed’, which are 
typically set at 10, 5, 5 and 1 respectively. 

Stoichiometric refi nement by molecular dynamics

On completion of the Leapfrog run a table is produced listing 
each of the monomers by their binding energy to the template. 
The highest ranking monomer or monomers can be observed in 
their highest affi nity positions around the template and selected 
appropriately for stoichiometric refi nement by molecular 
dynamics simulation. SYBYL provides a number of methods of 
solvating the template in the chosen monomer(s), and a number 
of approaches may be taken. Here we apply the XFIT algorithm, 
which sequentially adds solvents around the template in a 
close packing arrangement. This continues until the edges 
of the simulation environment, a small cube of dimensions 
automatically determined by the dimensions of the template and 
monomer. Molecular dynamics simulations are performed with 
an NTP ensemble at 300 K for 1 ns with a dielectric constant of 
1. The Tripos force fi eld is typically used with Gasteiger-Hückel 
charges and a non-bonding interaction limit of 8 Å is applied. 
The initial velocity is set from the relevant Maxwell-Boltzmann 
distribution. On completion the system is minimized and the 
interactions between the template and the solvent monomer 
are observed, the complex present being indicative of the 
appropriate ratios for the highest affi nity ratio of monomers for 
the polymerization mixture.

Results and Discussion

Application of the method

The protocol will be of interest to researchers involved in 
the design and synthesis of MIPs in any format (e.g. micro- and 
nano- particles, fi lms or monoliths), and suitable for the design 
of high affi nity MIPs for diverse templates including clinical 
targets (drugs), environmental/food targets (e.g. toxins) and 
for MIPs to be used in extreme environments. This protocol is 
particularly suitable for use with low molar mass templates and 
where the development of high affi nity MIPs is required: such 
as (i) in the separation and purifi cation of high-value products; 
(ii) analytical sample pre-treatment and solid-phase extraction; 
(iii) drug or fragrance release matrices; (iv) adsorbents 
for clinical or environmental applications; (v) sensors and 
assays for environmental analysis, food analysis and clinical 
diagnostics. The benefi ts for end-users of this technology 
have been identifi ed within clinical analysis, in diagnostics, in 
pharmaceutical manufacturing and by environmental agencies. 

The protocol has many advantages over other modelling 
techniques for monomer selection and MIP design. A library 
of 20 polymerizable monomers (27 accounting for charged and 
neutral forms) can be rapidly screened with a template in around 
30 minutes, or approximately 60 minutes with a database of 100 
monomers. The tasks described here can be accomplished using 
an unmodifi ed desktop PC in reasonable run times, obviating 
the need for supercomputing facilities. In the case of rationally-
designed polymers (RDPs, non-imprinted polymers bearing 
functional monomers selected on the basis of their interaction 
with the intended target), the same screening protocol can be 
used without the need for MD analysis, further reducing the 
time required for effective design. For some applications (such 
as in environmental and food analysis) RDPs may be preferred 
over MIPs as they possess a high binding capacity and reduced 
cost, while retaining good selectivity and affi nity for the target. 

Database design and automated screening

The monomer library in fi gure 1 is the original selection 
used in the automated MIP design procedure, and contains 
a range of acidic, basic and neutral monomers that may be 
capable of interacting with the template through non-covalent 
interactions. In this article the screening of members of the 
virtual monomer library for their interactions with the template 
is carried out using the LeapFrog algorithm within SYBYL. 
Existing tools for automatically ranking the greatest interaction 
of each of a library of compounds with another compound 
are not known to the authors, but the design or adaption of 
existing programs is possible. LeapFrog is a generic algorithm 
that provides a means for docking ligand precursor molecules 
with receptor binding sites in order to determine the optimum 
ligand structure. Interaction points within the receptor site are 
identifi ed by sampling the environment within the binding 
site and determining the electrostatic, steric, and lipophilic 
characteristics, giving an indication of appropriate geometric 
and electronic properties of new drugs for the receptor. In 
choosing the correct parameters for the docking, the ‘ligands’ 
may be the library of functional monomers, and the ‘receptor 
sites’ regions of high or low electron density immediately 
surrounding the template.

Using the LeapFrog approach, each monomer is placed 
in close proximity to the interaction points identifi ed on the 
template surface and a binding energy calculated. The monomers 
are then rotated by a set small distance around the interaction 
point or moved to a different site, and the binding energy is again 
recorded. Figure 2 shows the interaction points (represented here 
as red, blue and yellow spheres) around a creatinine template 
with various monomers being analyzed. Upon completion the 
monomers are presented with each of their strongest binding 
interactions and ranked accordingly. The positions of each of 
the monomers, both in the position of greatest affi nity and 
lesser arrangements, can also be visualized with the template 
to provide a sense of regionality. Table 1 shows a typical binding 
energy table ranking monomers with highest binding with N-3-
oxo-dodecanoyl-L-homoserine lactone template. 

Monomers giving the highest binding scores will be those that 
form the strongest complexes with the template and represent 
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Figure 1: Virtual library of functional monomers fi rst used in the automated screening protocol. The library has since been expanded, but the monomers shown are still 
regularly used in synthesis.

Figure 2: General (top left) and 3D ball-and-stick (top right) representations of creatinine, and monomer interaction with creatinine template (bottom). The colored balls 
in red, blue and yellow donate the interaction sites used to run the LeapFrog algorithm. These sites represent points of electron density maxima and minima around the 
template creatinine.
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the successful design of MIPs for a broad range of templates 
[40,41], some of which are listed in table 2 [33-35, 42-52]. The 
protocol has been advanced through its initial use by refi nement 
of the parameters and the introduction of further functional 
monomers. A number of these new additions are more specialist 
compounds that must fi rst be synthesized and cannot be readily 
obtained commercially, but are useful in controlling target 
affi nity and selection for certain polymer properties. 

In the case of RDPs the choice of monomer selected via 
the screening process has been shown to be suffi cient for the 
synthesis of high affi nity materials [43,44]. For the synthesis 
of these materials further refi nement is not required, and so 
the whole design procedure can be completed in under an hour. 
Typically however a stoichiometric ratio must be determined 
for effective complexation in the pre-polymerization mixture 
for an imprinted polymer, and thus the MD protocol must be 
followed. The examples in table 2 range from (i) good imprinting 
factors [33,35]; (ii) high recovery of template from using solid 
phase extraction (SPE) [42,43,50,51]; (iii) controlled release 
[46,47]; (iv) dissociation constant in nM [35]; and (v) industrial 
applications [44,48]. This procedure therefore can be observed 
to produce excellent results with minimal time requirements, 
making this whole process highly effi cient in comparison with 
alternative approaches.
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Table 1: Typical binding energy table ranking monomers with highest binding with 
N-3-oxo-dodecanoyl-L-homoserine lactone template.

MONOMER
MINIMIZED STRUCTURE OF 

MONOMER
BINDING ENERGY

(kcal mol-1)

Acrylamide
-40.78

Methacrylic acid
-32.08

Itaconic acid 
-31.73

Bisacrylamide -31.38

Acrylamido-
2-methyl-1-

propanesulfonic
acid (AMPSA)

-25.62

the best candidates for polymer preparation. By visualizing 
the interactions for several high affi nity monomers, and each 
of these monomers in positions of slightly lower affi nity, an 
indication is given of possible combinations of monomers 
which could be used to develop higher affi nity MIPs. 

Refi nement using MD simulations 

The appropriate ratio of polymerization mixture 
components is determined by performing MD simulations. 
This may involve the use of a single monomer species, or if 
the screening shows that two different monomers interact with 
different regions of the template, then these monomers may 
act synergistically in the imprinting of that template and both 
will then be used.

A pre-computed box of fi xed dimensions is prepared by 
saturating the space around the template with the monomer 
selected from the results obtained during the screening. Figure 
3 shows a graphical representation of a pre-computed box 
with the template at the center of the box (shown in purple) 
surrounded by itaconic acid. Upon equilibration the system is 
energetically minimized to clearly show the interactions found 
between the template and the monomers. Analysis of this 
complex provides a guide to the appropriate ratios of monomer 
to template in the pre-polymerization mixture. While the 
screening process yields good predictions of appropriate 
functional monomer selection alone, this process of solvating 
the template in the highest affi nity monomer/monomers adds 
an additional refi nement step which in not accounted for by 
any other approach to design. 

Protocol development

The procedure was fi rst demonstrated in a simple form 
some time ago for the design of a MIP for creatinine [34]. Since 
that time dozens of papers have been published describing 

Figure 3: Pre-computed box of a small organic template (in red) surrounded by 
itaconic acid monomers. By performing the molecular dynamics simulation 
followed by energy minimization, an appropriate ratio of functional monomers to 
template can be determined from the complex formed in the model.
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