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Abstract

Probiotic therapy involves using live microorganisms, primarily bacteria and yeasts, to improve or restore the balance of benefi cial bacteria in the body, particularly 
in the gut. These microorganisms, when administered in adequate amounts, can offer health benefi ts to the host. Probiotic therapy is used for various conditions, 
including diarrhea, irritable bowel syndrome (IBS), and even to support immune function. The dynamics of probiotic therapy are extremely nonlinear. Bifurcation analysis 
is a powerful mathematical tool used to deal with the nonlinear dynamics of any process. Several factors must be considered, and multiple objectives must be met 
simultaneously. Bifurcation analysis and multi-objective nonlinear model predictive control (MNLMPC) calculations are performed on two dynamic models of probiotic 
therapy. The MATLAB program MATCONT was used to perform the bifurcation analysis. The MNLMPC calculations were performed using the optimization language 
PYOMO in conjunction with the state-of-the-art global optimization solvers IPOPT and BARON. The bifurcation analysis revealed the existence of branch points in both 
models. The branch points (which cause multiple steady-state solutions from a singular point) are very benefi cial because they enable the Multiobjective nonlinear model 
predictive control calculations to converge to the Utopia point (the best possible solution) in the models. It is proven (with computational validation) that the branch points 
were caused because of the existence of two distinct separable functions in one of the equations in each dynamic model. A theorem was developed to demonstrate this 
fact for any dynamic model.

Background

A signifi cant amount of work involving probiotic therapy 
has been conducted over the last century. This is because it 
was discovered that using live microorganisms, primarily 
bacteria and yeasts, can improve or restore the balance of 
benefi cial bacteria in the body, and immunity can be improved 
by these microorganisms. Mattar, et al. [1] studied the effect of 
probiotics on enterocyte bacterial translocation in vitro. Dani, 
et al. [2] studied the use of Probiotics feeding in the prevention 
of urinary tract infections. Millar, et al. [3] investigated the use 
of probiotics for preterm infants. Bin-Nun, et al. [4] studied 
the use of oral probiotics to prevent necrotizing enterocolitis. 
Land, et al. [5] showed that Lactobacillus sepsis was associated 
with probiotic therapy. Szajewska, et al. [6] investigated the 
effi cacy of probiotics in gastrointestinal diseases in children. 
Hammerman and Kaplan [7] discussed the connection between 

probiotics and neonatal intestinal infection. Barclay, et al. [8] 
reviewed the use of probiotics for necrotizing enterocolitis. 
AlFaleh, et al. [9] studied the use of probiotics for the prevention 
of necrotizing enterocolitis in preterm infants. Lin, et al. [10] 
showed that oral probiotics prevent necrotizing enterocolitis 
in very low birth weight preterm infants. Claud and Walker 
[11] studied bacterial colonization, probiotics, and necrotizing 
enterocolitis. Arciero, et al. [12] developed a mathematical 
model to analyze the Role of Probiotics and Infl ammation in 
Necrotizing Enterocolitis. Zhang, et al. [13] investigated the 
impacts of gut bacteria on human health and diseases. Ahmed 
and Jawad [14] performed a bifurcation analysis of the role of 
good and bad bacteria in the decomposing toxins in the intestine 
with the impact of antibiotics and probiotics supplements. This 
work aims to perform bifurcation analysis and multiobjective 
nonlinear control (MNLMPC) studies in two models involving 
probiotics, which are discussed in Arciero, et al. [12] (model 1), 
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and Ahmed and Jawad [14](model 2). The paper is organized as 
follows. First, the model equations are presented, followed by 
a discussion of the numerical techniques involving bifurcation 
analysis and multiobjective nonlinear model predictive control 
(MNLMPC). The results are then presented, followed by the 
discussion and conclusions.

Model description

Probiotic Model 1Arciero, et al. [12]

The model equations are 
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Here, bl represents the pathogenic bacteria in the intestinal 
lumen, bpbl represents the Probiotic bacteria in the intestinal 
lumen,  the permeability of the intestinal wall to bacteria, b is 
the pathogenic bacteria in the blood/tissue, bpb represents the 
probiotic bacteria in the blood/tissue, and mv represents the 
activated infl ammatory cells. 

The parameter values are 

1 1 2
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2
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R2 was used as the bifurcation parameter and the control 
value.

Probiotic model 2Ahmed and Jawad [14]

The dynamic model equations are 
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(b1,b2,c,a) represent the good bacteria, the bad bacteria, 
the non-decomposing toxins in the large intestine, and the 
concentration of dissolved antibiotics. The base parameter 
values are 
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r1 was used as the bifurcation parameter and control value.

Bifurcation analysis 

The MATLAB software MATCONT is used to perform 
the bifurcation calculations. Bifurcation analysis deals with 
multiple steady states and limit cycles. Multiple steady states 
occur because of the existence of branch and limit points. 
Hopf bifurcation points cause limit cycles. A commonly used 
MATLAB program that locates limit points, branch points, and 
Hopf bifurcation points is MATCONT [15,16]. This program 
detects Limit points (LP), branch points (BP), and Hopf 
bifurcation points (H) for an ODE system 

( , )dx f x
dt

                   (3)

nx R  Let the bifurcation parameter be . Since the gradient 
is orthogonal to the tangent vector, 

The tangent plane at any point must satisfy. 

0Az                    (4)

Where A is 

[ / | / ]A f x f                         (5)

Where is the Jacobian matrix? For both limit and branch 
points, the matrix must be singular. The n+1th component of 
the tangent vector Zn+1 = 0 for a limit point (LP), and a branch 
point (BP), the matrix must be singular. At a Hopf bifurcation 
point, 

det(2 ( , )@ ) 0x nf x I                     (6)

@ indicates the bialternate product while is the n-square 
identity matrix. Hopf bifurcations cause limit cycles and 
should be eliminated because limit cycles make optimization 
and control tasks very diffi cult. More details can be found in 
Kuznetsov [17,18] and Govaerts [19]. 

Hopf bifurcations cause unwanted oscillatory behavior and 
limit cycles. The tanh activation function (where a control value 

u is replaced by ) ( tanh / )u u   is commonly used in neural nets 

[20-23] to eliminate spikes in the optimal control profi le. Hopf 
bifurcation points cause oscillatory behavior. Oscillations are 
similar to spikes, and the results in Sridhar [24] demonstrate 
that the tanh factor also eliminates the Hopf bifurcation by 
preventing the occurrence of oscillations. Sridhar [24] explained 
with several examples how the activation factor involving the 
tanh function successfully eliminates the limit cycle causing 
Hopf bifurcation points. This was because the tanh function 
increases the period of the oscillatory behavior, which occurs 
in the form of a limit cycle caused by Hopf bifurcations. 
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Multiobjective Nonlinear Model Predictive 
Control (MNLMPC) 

Flores Tlacuahuaz, et al. [25] developed a multiobjective 
nonlinear model predictive control (MNLMPC) method that is 
rigorous and does not involve weighting functions or additional 
constraints. This procedure is used for performing the MNLMPC 

calculations. Here 
0

( )
i f

i

t t

j i
t
q t





  (j = 1, 2..n) represents the variables 

that need to be minimized/maximized simultaneously for a 
problem involving a set of ODEs. 
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dt

                     (7)

tf Being the fi nal time value, n is the total number of objective 
variables, and u is the control parameter. This MNLMPC 
procedure fi rst solves the single-objective optimal control 
problem, independently optimizing each of the variables. The 
minimization/maximization of will lead to the values. Then the 
optimization problem that will be solved is 
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This will provide the values of u at various times. The fi rst 
obtained control value of u is implemented, and the rest are 
discarded. This procedure is repeated until the implemented 
and the fi rst obtained control values are the same, or if the 

Utopia point where (
0

*( )
i f

i

t t

j i j
t

q t q




  for all j) is obtained. 

Pyomo [26] is used for these calculations. Here, the 
differential equations are converted to a Nonlinear Program 
(NLP) using the orthogonal collocation method. The NLP is 
solved using IPOPT [27] and confi rmed as a global solution 
with BARON [28]. 

The steps of the algorithm are as follows. 

1. Optimize and obtain at various time intervals, ti. The 
subscript i is the index for each time step. 

2. Minimize 

0
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j i j
j t

q t q



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   and get the control 

values for various times.

3. Implement the fi rst obtained control values. 

4. Repeat steps 1 to 3 until there is an insignifi cant 
difference between the implemented and the fi rst 
obtained value of the control variables or if the Utopia 
point is achieved. The Utopia point is when for all j. 

Sridhar [29] proved that the MNLMPC calculations 
converge to the Utopia solution when the bifurcation analysis 

revealed the presence of limit and branch points. This was 
done by imposing the singularity condition on the co-state 
equation [30]. If the minimization of lead to the value and the 
minimization of lead to the value, the MNLPMC calculations 
will minimize the function. The multiobjective optimal control 
problem is

* 2 * 2
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Differentiating the objective function results in 
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The Utopia point requires that both are zero. Hence  
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The optimal control co-state equation [30] is 
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i Is the Lagrangian multiplier. tf This is the fi nal time. The 
fi rst term in this equation is 0, and hence. 

( ) ; ( ) 0i x i i f
d f t
dt

                    (13)

At a limit or a branch point, the set of ODE ( , )dx f x u
dt

  fx is 

singular. Hence, there are two different vector values for where 
and. In between, there is a vector where. This, coupled with the 
boundary condition, will lead to. This makes the problem an 
unconstrained optimization problem, and the only solution is 
the Utopia solution. 

Results 

Probiotic model 1

When r2 was used as the urcation parameter, a branch point 
was located at 

(bl,bpbl,eps,b,bpb,mv,r2) Values of (13.2359, 0, 0.1860, 
0.2626, 0.1287, 0.2987, 0.1976). This is shown in Figure 1. The 
MNLMPC calculations were minimized individually and led to 
values of 20.5914 and 0.21552. r2 was the control parameter. 
The multiobjective optimal control problem will involve the 
minimization of the subject to the equations governing Model 
1. This led to a value of zero (the Utopia solution). The MNLMPC 
control value (r2) was 00.95777. Figures 2,3 show the various 
MNLMPC profi les. Figure 4 shows the control profi le of r2. 
This profi le exhibited noise, which was remedied by using the 
Savitzky-Golay fi lter to produce the smooth version of r2 (r2sg).

Probiotic model 2

When r1 was used as the bifurcation parameter, a branch 
point was located at 
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(b1,b2,c,a,r1) values of (0; 0; 4.000000 5.084746; 0.532881). 
This is shown in Figure 5. 

For the MNLMPC calculations, 
0 0 0

2( ), ( ), ( )
i f i f i f

i i i

t t t t t t

i i i
t t t
b t c t a t

  

  

    

were minimized individually and led to values of 0, 8, and 
5.0847. R1 was the control parameter. The multiobjective 
optimal control problem will involve the minimization of the 
subject to the equations governing Model 1. This led to a value 
of zero (the Utopia solution). The MNLMPC control value (1) 
was 0.2185649. Figures 6-9 and 3 show the various MNLMPC 
profi les. 

Discussion of results

Theorem 

If one of the functions in a dynamic system is separable into 
two distinct separable functions, a branch point singularity 
will occur in the system. 

Proof 

Consider a system of equations. 

( , )dx f x
dt

                  (14)

α Is the bifurcation parameter. Defi ne the matrix A as 

[ ]fA
y





                (15)

Figure 1: Bifurcation analysis Probiotic model 1 (indicating branch point).

Figure 2: MNLMPC Probiotic model 1  (bl, bpbl,bpb).

Figure 3: MNLMPC Probiotic model 1  (mv, eps,b).

Figure 4: MNLMPC Probiotic model 1  (r2, r2sg)(r2sg is the smooth version of r2 
obtained by using the Savitzky Golay Filter).

Figure 5: Bifurcation analysis Probiotic model 2 (indicating branch point).
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The tangent at any point y; ( 1 2 3 4 1[ , , , ,.... ]nz z z z z z  ) must 
satisfy 

0Az                    (16)

For a branch bifurcation point (Branch point from now on) 
(BP), the matrix must be singular. Let any of the functions (in 
the set f(y)), fi, be separable into 2 functions 1, 2 as 

1 2if                   (17)

At steady-state fi (y) = 0 and this will imply that either or 
both must be 0. This implies that the two branches will meet at 
a point where both are 0. 

At this point, the corresponding row in the matrix B would 
be 

[ ]i
k

f
y



                (18)

However, 

2 1
1 2[ ( 0) ( 0) 0( 1.,, )i

k k k

f k n
y y y
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      
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           (19)

This implies that every element in the row would be 0, and 
hence the matrix B would be singular. The singularity in B 
implies that there exists a branch point. 

In the probiotic model 1, a branch point was located at 

(bl,bpbl,eps,b,bpb,mv,r2) values of (13.2359, 0, 0.1860, 
0.2626, 0.1287, 0.2987, 0.1976)

(Here, the two distinct functions can be obtained from the 
second ODE in probiotic model 1

  2
2

*( ) ( ) 1 ( )
2

bpbl bld bpbl r bpbl eps k bpbl
dt k

 
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 


         (20)

The two distinct functions are 

0bpbl                                (21)

and

  2
2

*
1 ( )

2
bpbl bl

r eps k
k
 

  
 


               (22)

Figure 6: MNLMPC Probiotic model 1(b2).

Figure 7: MNLMPC Probiotic model 1(a).

Figure 8: MNLMPC Probiotic model 1(c).

Figure 9: MNLMPC Probiotic model 1(r1).
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The values satisfy both the equations and computationally 
validate the theorem.

In the probiotic model 2, a branch point was located at the 
values (b1, b2, c, a, r1) of (0, 0, 4.000000, 5.084746, 0.532881). 

(Here, the two distinct functions can be obtained from the 
fi rst ODE in probiotic model 2, 

 
        1 1 21

1 1 0 1 1 1 1 1 1(( ) (1 ( ) )
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
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
   

                (23)
The two distinct functions are 

1 0b                (24)

and  
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b b
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Setting 

1 0 1 1 1 1 2

1

  40;  0.1; 0.14; 0.016; 0.5;  0.018; 0,  0,  4,  
5.084746,  0.532881

k b b c
a r

            
 

Satisfi es both the equations and validates the theorem.

Additionally, the MNLMPC calculations in both models 
converge to the Utopia solution, justifying the analysis of 
Sridhar [29]. 

Conclusion

Bifurcation analysis and multiobjective nonlinear control 
(MNLMPC) studies in two probiotic therapy models. The 
bifurcation analysis revealed the existence and branch points in 
both models. The branch points (which cause multiple steady-
state solutions from a singular point) are very benefi cial 
because they enable the Multiobjective nonlinear model 
predictive control calculations to converge to the Utopia point 
(the best possible solution) in the models. It is proven (with 
computational validation) that the branch points were caused 
because of the existence of two distinct separable functions in 
one of the equations in each dynamic model. A theorem was 
developed to demonstrate this fact for any dynamic model. 
A combination of bifurcation analysis and Multiobjective 
Nonlinear Model Predictive Control (MNLMPC) for dynamic 
models involving probiotic therapy is the main contribution of 
this paper. 
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