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Abstract
The rate from alongshore sediment transport in the surf zone depends on the product of the local wave height and mean alongshore current speed. The aim of this 

article was to predict the alongshore sediment transport rate using a semi-empirical application of Artifi cial Neural Network (ANN) on the south coast of the Caspian Sea. 
This study reports the measurements of the alongshore sediment transport rate performed in the surf zone of the Noor coastal area located in the southern part of the 
Caspian Sea from September 2011 to June 2012.  Further, alongshore sediment transport rates have been estimated by different famous semi-empirical formulas. On 
the other hand, an artifi cial neural network model was trained using three predominant parameters of sediment transport formulas including wave-breaking height (Hb), 
surf zone width (W), and alongshore current velocity (V). ANN models were able to show hidden laws of natural phenomena such as the sediment transport process. 
The results of ANN and some sediment transport rate formulas concerning alongshore sediment transport rate were compared with corresponding measured values. 
Sediment transport is still an evolving science because it depends on complex processes. It is worth mentioning that some of these processes have not been measured 
or fully understood. Therefore, it is necessary for engineers to pay attention to the fact that even the best forecasts available in the fi eld of sediment transport have a 
wider margin of error than the forecasts expected in other disciplines and fi elds of science and engineering. The results show that the estimated value of alongshore 

sediment transport rate by Coastal Engineering Research Center (CERC), Walton and Bruno, Kamphuis formulas, and ANN model is 737.8 

3m

day
, 670.3 

3m

day
, 593.3 

3m

day
 

and 592.4 

3m

day
 , respectively. Also, according to the results, the calculated R2 values, in the estimation of alongshore sediment transport rate for ANN model and CERC, 

Walton and Bruno, and Kamphuis formulas, are 0.99, 0.78, 0.75, and 0.66, while the Root Mean Squared Error (RMSE) values are 4.7 × 10-4, 8.4 × 10-3, 9.1 × 10-2 and 2.4 × 
10-3, respectively.This work carried out in the framework of the SWOT 3MC research program, gives some insights into the complex behavior of tidal propagation in the 
Seine estuary and its non-stationary dynamics close to the river effects in response to extreme sea levels leading to coastal fl ooding.
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Introduction

In recent decades, different empirical formulas have been 
presented to predict the coastal sediment transport rate by 
many researchers. Each of them has been calibrated and is 
used for a certain range of sediment grains, under limited 
conditions of bed sedimentation. An in-depth literature review 
revealed that one of the most used models for predicting the 
parallel shore sediment transport rate was based on Artifi cial 
Neural Network (ANN) techniques, due to its constantly high 
predictive ability compared to other approaches, i.e., linear 
models, which constitute one of the major’s motivation of our 
present investigation. 

Prediction of coastal parallel sediment transport is an 
important objective of coastal engineers to determine erosion 
and sedimentation. Most scientists have struggled to fi nd 
the experimental procedure to predict the rate of parallel 
shore sediment transport in the past decades; Although, 
because of the signifi cant infl uence of random parameters 
and data, the existing experimental methods have offered 
completely different results and limited applications. The 
longshore sediment transport rate enters most coastal 
engineering designs. The longshore current generated by 
obliquely incident-breaking waves plays an important role in 
transporting sediment in the surf zone. The longshore current 
velocity varies across the surf zone, reaching a maximum value 
close to the wave-breaking point Galvin, 1967, Basco, 1982. For 
practical purposes, the average longshore current measured in 
the surf zone should be suffi cient for estimating the longshore 
sediment transport rate (LSTR). LSTR is, in general, calculated 
using semi-empirical equations, which are mostly based on 
laboratory data (Shore Protection Manual, 1984). A sediment 
transport equation incorporating fi eld data would, however, be 
more reliable for fi eld application at a particular site. [1].

The formulas for the calculation of the parallel coast 
transport rate have been developed over several years. The 
Coastal Engineering Research Center (CERC) formula developed 
in 1973 by the U.S. Army Engineer Waterways Experiment 
Station (WES) and later updated in 1984 was based on the 
assumption that the rate of sediment transport is calculated 
only for the part induced by waves using the overall wave 
characteristics [2-4]. 

Sediment transport is still a science in evolution because it 
depends on complex processes. Some of these processes are not 
measured or fully understood; therefore. In fact, the prediction 
of precipitation transfer has been far more accurate compared 
to the prediction of other weather factors [5].

Wave breaking near coastal regions and currents are two 
main factors known for coastal sediment transport. Waves 
generate energy from the winds blowing on the surface of the 
water, and when they reach the break-point region they lose a 
large amount of energy. Wave breaking leads to disarray in the 
water column and movement of sediment [6].

The transport rate of sediment load which is carried by 
surface fl ow, is a main pattern in controlling river ecosystems 

and is one of the main parameters in the design, implementation, 
and utilization of hydraulic structures, irrigation, transfer and 
treatment of water, watershed management, and fl ood control. 
Given the importance of the sediment transport phenomenon, 
extensive research during recent years has been conducted 
using Artifi cial Intelligence (AI) methods [3].

For these purposes, it is desired to make concurrent 
measurements of the transport rate at a point amidst the 
surf zone to get its cross-shore or lateral distribution. Point 
measurements are indispensable since the transport rate 
is based on the specifi cation of the local waves, currents, 
bottom material, and beach morphology. The lateral and 
vertical distributions of the alongshore sand transport rate 
were needed for related to changes to the beach morphology 
to infl ict hydraulic forces, and for designing structures that 
may sequester and transport alongshore. Whole alongshore 
transport is easily calculated from the lateral distribution by 
accretion on the active zone of transport [7].

This procedure is according to the principle that the LSTR 
(alongshore sediment transport rate), including bed load and 
suspended load, is commensurate to an alongshore wave power 
P per unit length of beach; LSTR = K P, with K = calibration 
coeffi cient. The CERC formula was calibrated using fi eld data 
from sand beaches. The factors of particle diameter and bed 
slope were studied systematically by Kamphuis [2], resulting 
in a more refi ned equation for LSTR. The latter equation 
was found to be in better agreement between computed and 
measured transport rates [2].

Littoral transport is to movement of sedimentary material 
in the Coastal area, which is the zone close to the shoreline. 
Littoral transport was classifi ed as cross-shore transport or 
as alongshore transport. It may be a result of the interplay 
between winds, waves, currents, tides, sediments, and other 
phenomena in the littoral zone. The transport rate can be 
explained by the product of instantaneous concentration and 
the instantaneous velocity [8].

A few predicting models alike Artifi cial Neural Networks 
(ANNs)were previously applied to coastal studies [5,9], wave 
prediction [10,11], ripple and beach bar behavior and location 
[12,13], coastal water level prediction [14-17], wind–wave 
analysis Herman, et al. (2009) [18], head–bay geometry [19], 
tidal prediction [20], breakwater design [21,22] and estimation 
of suspended sediment concentrations Cipollini, et al. (2001) 
[23].

Bakhtyar, et al. estimate the sediment transport rate on the 
Arge coast of India by a neural fuzzy inference system [6]. Also, 
Hashemi, et al. stated that the ANN could predict the seasonal 
changes in Tremadoc Bay coast profi les [24]. In another study, 
Kabiri-Samani, et al. by using Artifi cial Neural Network (ANN) 
and Fuzzy Logic (FL), evaluated the sediment transport rate 
methods in the coastal zone of Iran and concluded that ANN, 
FL and gradient descent methods have better effi ciencies 
than the others [8]. Boveiri and Musaddad calculated the 
sediment transport rate in the Caspian Sea and reported that 

the highest transport rate was 3927.45 

3m

day
 during the cold 



063

https://www.peertechzpublications.org/journals/annals-of-marine-science

Citation: Allahkarami A, Nili J, Bakhtyar S, Kaki F, Sadeghifar T (2023) Alongshore sediment transport rate –measurement and comparison with empirical formulas 
and an Artificial Neural Network (ANN) model. Ann Mar Sci 7(1): 061-072. DOI: https://dx.doi.org/10.17352/ams.000040

season in Anzaliport and the lowest transport rate was 122.53 
3m

day
 during the warm season in Noshahr Port [25]. In addition, 

Bakhtyar, et al., in the two mines focused on the three-
dimensional numerical modeling of Hyper-Morphdynamic 
near the coast on the surf zone environment and cutting in 
cross-directions. In this process, they stressed the ocean and 
coast characteristics in the process of the transition of sediment 
in long and inseparable directions [1].

While Malekmohamadi, et al. [26], Londhe, et al. [27], and 
Deshmukh, et al. [28] composed NN and numerical models to 
realize the wave height prediction, Sadeghifar, et al. [29], using 
Recurrent Neural Networks (RNN) for wave estimations based 
on the data collected and the measurement of the sea waves in 
the Caspian Sea in northern Iran.

Oh, and Suh (2018), in the title article Real-time forecasting 
of wave heights using EOF – wavelet – neural network hybrid 
model, the Wavelet and Neural Network hybrid (WNN) models 
indicate further performance than ANN models. As well as the 
WNN model has been extending to the anticipation of the wave 
height at a single location where the past wave height data are 
available. To solve these problems, in this paper, a hybrid model 
has been developed with a combination of the experimental 
orthogonal function analysis and wavelet analysis with the 
neural network (abbreviated as EOFWNN model).

Elbisy and Osra [30], in an article entitled “Application 
of Group Method of Data Handling Type Neural Network for 
Signifi cant Wave Height Prediction multifold models and 
approaches have been proposed to estimating wave parameters, 
such as experimental, numerical-based approaches, and soft 
computing. In this research, the group method of data handling 
kind neural network (GMDH-NN) was presented for signifi cant 
wave height prediction in an attempt to suggest a new model 
with superior explanatory power and stability.

AI methods such as ANNs have been successfully used in 
coast studies, wave prediction, local behavior of coastal sand, 
coastal water level forecasts, coastal water balance analysis, 
wind-related data analysis, tide prediction, breakwater design, 
and estimation of the pending precipitation concentration. 
Applications of artifi cial intelligence techniques as well as 
neural networks, fuzzy logic, and genetic algorithms, in 
forecasting beach surface changes, are promising a new branch 
of marine research.

An ANN is appropriate for tendentiously understood 
underlying physical processes such as wind-wave relation. 
The main subject in this kind of estimating is the selection of 
suitable input data schemas that are presumably to infl uence 
the desired output. Even though the ANN has fl exibility, it 
may not be able to adapt to non-stationary data without 
preprocessing the input and output data [31]. In recent years, 
hybridization of ANN with other techniques has been used in 
wave height forecasting to dominate the limitation of ANN and 
to provide effi cient modelling. Ozger [32] offered a combination 
of wavelet and fuzzy logic methods to anticipate wave heights 

up to 48-h lead time. The correlation coeffi cients between 
observed and forecasted wave heights were between 0.647 and 
0.745, which were larger than those of auto-regressive moving 
mean (ARMA), ANN, and fuzzy logic models.

A trap named fl ow the streamer trap, which has been 
expanded to permission direct point the measurement of the 
lateral and vertical distributions of the transport rate in the 
near-shore zones under low wave energy conditions has been 
used in this study. Underscore will be given to measure the 
LSTR in the surf zone. The major study aims to compare the 
performances of semi-empirical formulas and an artifi cial 
neural network (ANN) model in predicting LSTR in the Noor 
coastal area, in the southern part of the Caspian Sea. For this 
purpose, a daily observation of alongshore sediment transport 
rates is performed and used as a reference for evaluating the 
accuracy of the semi-empirical formulas and the proposed 
ANN model. 

Materials and methods

Study areas

The segment of beach by 2.4 km in length at Noor’s coastal 
area, in the southern part of the Caspian Sea, in the North of 
Iran, was selected for this study. The beach is straight and open 
and lies between 36° 52’ 5.20” and 37° 17’ 40.93” N latitudes 
and 50° 32’ 17.16” and 53° 27’ 37.18” E longitudes. These 
measurements were carried out from September 2011 to June 
2012. The mentioned stations were far apart 0.6 km in distance. 
The 0.6 km coastal stretch of Izadshahar City on the East 
and Royan City on the West forms the study area (Figure 1). 
Sediment samples were collected at 0 m, 5 m, and 10 m depths 
using grain size of the shoreline of the Caspian Sea.

Research method

To carry out the present study, from September 2011 to July 
2012, parameters including breaking wave height (Hb), wave 
period (T), breaking angle (ab), surf zone width (W), using 
fi eld observations at four stations, was measured and recorded 
(Figure 2). The oldest method used at present is to measure 
the buoyancy parameters (height, period of frequency, angle) 
and width of the coastal surfzone area. The measurement was 
conducted daily at four stations through the end of July 2012. 
For the measurement of the breakage wave heights, the foam 
was placed on the surface of the water tangent, and the distance 
between the surface and the corona to the fractured crown as 
a wave height of torture, which is shown in Figures 3-6 [33]. 
Then obtain the angle of the breaking wave height with the 
seaside, we observe the waves that are drawn off the coast from 
one conveyor that is close to the beach with eye observations 
[33]. In order to gain the period, the time interval between two 
successive waves was measured by the chronometer and the 
obtained value was recorded in the table. The distance between 
the fi rst wave breakdowns to the coastal line was calculated to 
measure the width of the surfzone region using an eye monitor 
[33]. Samples from sediment across the zone, to analyze the 
sediment grain size distribution (d) on the coastline and in 
depths of 0 m, 5 m, and 10 m using a grapple, were taken and 
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delivered to the laboratory. The alongshore current velocity 
in the surf zone (V) was measured by using a current meter 
and the bed slope was determined by dividing the water depth 
at a certain horizontal distance from the shoreline by this 
horizontal distance (Figure 2b).

The streamer trap method

The device used in this study called the streamer trap used 
to measure the rate of sediment transport in the surfzone 
area. The name of the trapping device is captured from 
rectangular bags along with a sieve-type fabric, in which 

the fl ow is sediment and allows the water to cross over. The 
suspended trap was mainly designed to measure the rate of 
sediment transport in the coastal surfzone. And this debate 
is focused largely on it [34]. The rate of sediment transport 
along the beach can be measured using a suspended streamer 
trap. The used trap included a metal frame attached to the end 
of which are the bags of polyester monofi lament sieve cloth, 
which was designed to capture the suspended sediments and 
bed. Trapping of sediment with traps is a natural method to 
measure the transport rate of point precipitation in the short 
term. It is possible to use a trap at the breakpoint area with 

Figure 1: An illustration of the sampling stations in the Caspian Sea shoreline (1, 2, 3, and 4: station numbers in coastal zone southern Caspian Sea).

Figure 2: (a) breaking wave height, (b) breaking wave angle, (c) surf zone width, (d) direction of the alongshore current velocity.
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waves less than two meters high and with one person to hold 
a trailer (Figure 3). A sieve cloth permits water to fl ow through 
but captures sediment particles of a nominal diameter greater 
than the mesh opening. Streamers in usage at CERC are made 
of 0.105 mm mesh cloth. In the United States, the cloth can be 
purchased in bolts 102 cm (40 in) wide and is bought per linear 
foot (30.5 cm) [35].

Trap design

The trapping framework is made of P.V.C. The rectangular 
section made of steel, which is connected to the tracker 
fabric, is made four centimeters on each side to be installed 
by bolts and beads on a stool to keep the trapping gap at 
high currents and throughout the fl ow distribution. Control 
factors include fl ow velocity along the beach, wave height, 
water depth, turbulence, grain size, and sampling time. On the 
other hand, the dependence of these factors on sampling time 
is still investigated. The height of the hanging trap is 1.2 m. 
Most sediment collected in traps is caused by fl ow. Traps are 
designed to prevent the removal of seditious materials and to 
ease the fl ow of water. However, the biggest problem is the 
trap around the bases during wave activity. Therefore, the 
presence of a person is required to hold a trap during sampling 
time. The bags are open, wrapped up, and closed by a Nayloni 
rope (Figure 3).

Trap operation

At the start of the cycle. The retention of the location of 
the marked area surfzone of the transfer, position of the traps 
involved, the way the openings of the traps involved fl ow along 
the coast located, and the base of the shelves for the perfect in 
the world, is also applied. Directly with the length of the trap 
wide as the crater fl ows into the Valley. If the weak current 
or alternating current, the entangled tend to spin around 
the basins, resulting in a fl uctuation of water by the waves. 
Therefore, the action of tolerance against the downward 
currents and facing the trap beach is done by keeping the trap 
on the bed [36] (Figure 4).

Transport rate analysais

In this topic, a method for calculating the sediment transfer 
rate from raw data is explained. Such as moment samples, 
pumps, and audio sensor types, which are used to measure 
the sediment concentration, but the extract trap be used to 
extend sediment fl ux. For example, the weight of the sand is 
passing by the nozzle at a special cross-section of the sampling 
interval. If sampling was performed in a single-strain stream, 
the fl ux can be directly obtained with the developed fl ow by 
using the empirical formula of the predicted relative [36].

The fl ux of sand F at streamer k is given by:

  ( )
  

s k
F k

h w t

                   (1)

Where F is sand fl ux [kg. (m2.s)-1], k is the streamer number, 
raising in order from the bottom (k = 1) to the last streamer (k = 
N), S is the dry weight of sand (kg), ∆h is the height of streamer 

nozzle (0.15 m), ∆w is the width of streamer nozzle (0.25 m), 
∆t is sampling time interval (s).

The fl ux between adjacent streamers, FE (k), can be predicted 
by linear interpolation using adjacent measured values:

       0.5 [   1 ]FE k F k F k                (2)

Alongshore Sediment Transport Rate (LSTR)

The LSTR is computed from the empirical equation reported 
by the alongshore energy fl ux in the breaker zone to the 
alongshore transport rate. The simplest and most commonly 
used methods for calculating LSTR are that of CERC [2,4,7,37] 
(Table 1).

In the above formulas, Qs is the volume of alongshore 
transport rate in m3. (Year)-1, Hb is breaking wave height in 
m, ab is breaker angle with respect to the coastline, Tp is peak 
wave period in s, mb is beach slope near the breaking point, 
d50 is median grain size, K is dimensionless constant relating 
sand transport to longshore energy fl ux and was taken as 

0.39, 
   

1
 = ,  

1
A s

s g p


    
is the mass density of the 

sediment (2650 kg.(m-3)),  is the mass density of seawater 
(1025 kg.(m-3)), g is the acceleration due to gravity (9.81m.(s-

2)), p is the porosity of sediment (0.4), T is wave period in s, Cf 
is friction coeffi cient (0.005), W is surf zone width in m, V is 

measured alongshore current velocity (m.s-1), and 

0
LH





 
 
 

is 

Figure 3: Streamer trap rack at study.

Figure 4: Photograph showing traps employed in the surf zone.
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theoretical dimensionless longshore current velocity [36]. In 
the foregoing ratio, vo is an initial alongshore current velocity 
and the index LH means mean level height wave [7].

Artifi cial Neural Network (ANN)

Concepts of ANN: ANNs are a relatively new non-linear 
statistical method that can be used to dissolve problems that 
are not suitable for conventional statistical methods. The 
ANNs are based on the present understanding of the biological 
nervous system, which includes some data processing sections 
called neurons or nodes that are grouped in layers. The input 
layer neurons get input data or information and send the values 
to the next layer of processing, getting across connections [38]. 

Figure 5 shows the basic artifi cial neuron. In this fi gure, 
diverse inputs to the network were demonstrated by the symbol 
xn. Further input in the fi gure is named bias, , and it is always 
equivalent to one. Any of these inputs are multiplied together 
with a connection weight. These weights are demonstrated 
by wn. In the simplest instance, these products are simply 
summed, fed through a transfer function, , to produce a 
result, and then output. In mathematical form, a neuron with n 
number of inputs is shown in Equation (3).

( )1   n w xi iOutput i                   (3)

Training of ANN: Distinguishing ANN weights is namely 
learning or training, and is equivalent to calibrating a 
mathematical model. The ANNs were trained by the input data 

and well-known output data. At the inception of training, 
the weights are Preliminary or with a random value or based 
on prior experiences. Then, the weights are systematically 
converted by the learning algorithm so that for a given input 
the difference between the ANN output and the observed output 
is lowered [38,40].

In the modeling process, the data sets of an alongshore 
current velocity, surf zone width, breaking wave height, 
and sediment transport rate were standardized to the range 
between 0 and 1, as follows:

 
x xi minNi x xmax min





                (4)

The structure of the neural network in this research, the 
three-layer network includes an input layer, a hidden layer, 
and an output layer. These types of networks are usually trained 
using the error-back propagation method. In order to prevent 
the weights of artifi cial neural networks from shrinking too 
much, the inputs of the network should be standardized. After 
standardizing the data, the number of network test data will be 
determined using the M test and the amount of gamma value. 
In the next step, the number of neurons in the input layer and 
the number of neurons in the hidden layer are determined. The 
artifi cial neural network model is trained using the training 
set and different combinations of inputs are made. In order 
to evaluate the results of the artifi cial neural network and 
compare them, the mean square error criterion, the effi ciency 
coeffi cient, and the scatter diagram of the observational and 
estimated data are used. In order to prevent the weights 
of artifi cial neural networks from shrinking too much, we 
standardize the inputs of the network using the equation (4). Xn 
= normalized value, Xi = real value of variable, Xmin = minimum 
real value of the variable and Xmax = maximum real value of the 
variable. In this research, 70 percent of the data was used for 
training, 15 percent of the data was used for validation, and 15 
percent was used for the test.

Performance evaluation: Four types of standard statistical 
criteria are proposed for statistical performance assessment. 

 

Figure 5: Fundamental concepts of artifi cial neurons [39]. 

Table 1: Semi-empirical formulas.

Formula name Formula Year

CERC 6 2.52.9 10 sinQ Hs b b  1984

Kamphuis  4 2 1.5 0.75 0.25 0.66.4 10 250Q H T m d sins pb b b
  1991

Walton and Bruno
 

5
0.78( )( )

2 0

KA gH WVCb f
Qs v

LHv






1989
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The root mean squared error (RMSE), effi ciency coeffi cient 
(CE), mean absolute error (MAE), Scatter Index (SI), and mean 
relative error (MRE) was used. The RMSE is a good measure 
for evaluating the performance of a model because RMSE is 
proportional to the observed mean. Therefore, the SI forms a 
good non-dimensional error measure. The four performance 
evaluation criteria used in this study can be calculated utilizing 
Equations (5) to (10).

1 2( )
1

 RMSE
n

P Oi in i





                (5)

2( )1
2( )1

 1  

n
O Pi ii

n
O Omii

CE  
 


 
               (6)

1
| |P OiMAE in

                    (7)

 
1

| | 100
1

n P Oi i
n i Om

MRE


 
             (8)

( ) 100
  

RMSI
SI

Average observation value
 

            (9)

( )( )2 0
2 0.5 2 0.5( ( ) ) ( ( ) )1 1

N
O O P Pmmi iiR

N N
O O P Pmmi ii i

 
    

   
           (10)

Where Oi and Pi are, respectively, the observed and predicted 

sediment transport rates, mo  is the average observed sediment 
transport rate and n is the number of observations. The RMSE 
is between zero and one, and the value of the error is as close 
as zero and shows the high accuracy of prediction. The index 
of scattering is regarding percentage and represents the 
percentage of scattering of the predicted data in comparison 
to the actual values, where the value of 0, represents a lack 
of scattering in the prediction. Moreover, the value of the 
correlation coeffi cient (R) between 1-1 and 1, and the value of 
1, the predictor without errors. The domains are CE for infi nity 
(weak model) up to 1 (good model) [32]. 

Results and discussion

Breaker characteristics

The daily alterations of breaking wave height, wave period, 
and breaker angle calculated from the wave measurements are 
shown in Table 2. The breaking wave height varied from 0.01m 
to 1.8 m with an average value of 0.47 m from September 2011 
to June 2012. The wave period mostly varied from 1.91 to 7.4 
s with a mean value of 4.65 s, and the mean wave-breaking 
angle was 27.80. The breaking waves approached the coast 
predominantly from the north (positive values). The mean surf 
zone width was about 84m. The daily statistical variables of 
wave characteristics [height (Hb), period (T) and angle (ab)], 

surf zone width (W), alongshore current velocity (V), beach 
slope (m), and grain size data (d) are shown in Table 2.

Sediment size distribution

The alterations from the middle size (d50) and d90 of the 
sediment at any trap location are shown in Table 3. As expected, 
d50 increased from the water surface to the seabed at any trap 
location. In general, the sediments include fi ne sand (d50 = 0.12 
mm to 0.2 mm) to medium sand (d50 = 0.2 mm to 0.25 mm).

Alongshore sediment transport rates measured by 
streamer traps

The sediment values observed by using the precipitation 
trapping method were evaluated daily between September 2011 
and June 2012 on the coast of Noor. Then the sediment was 
transferred to the laboratory, and it was dried at 105 °C for 24 
hours. Dried samples were weighed using digital scales. Then, 
the obtained values were placed in the formula. Values were 
plotted as 22 - 4 (Figure 6).

In Table 4, the fi nal values of the sediment transfer rate 
in the Noor coastal area in the south of the Caspian Sea were 
calculated on an annual and daily basis.

Prediction of alongshore sediment transport rate

There were several methods for calculating the rate of 
sediment transport along the beach, which are the results of 
relations proposed for computing the rate of sediment transport. 
These differences are mainly due to the method upon which 
the equation has been obtained. Since these relations have been 
obtained for certain beaches, it is likely that the results of them 
on the coasts are not good ones. Therefore, before using these 
equations in each region we need to examine the constraints 
used. To determine the LSTR in the study area, long-term 
observations of shoreline changes and sediment properties, as 
well as measurement campaigns were performed. The LSTRs 
were obtained from three various methods [2,4,37].

Table 2: The daily statistical variables of the observation data in the study area.

Parameter N Max Min Mean Stand. dev CV

Hb (m) 123 1.8 Figure 6a 0.01 0.3 0.18 0.24

T(s) 123 7 2.3 4.6 0.9 0.21

αb(
0) 123 60 Figure 6c 2 Figure 6c 27.8 11.5 0.41

W(m) 123 170 30 83.3 31.6 0.38

V (m/s) 123 0.5 0.1 0.2 0.09 0.45

m 123 0.3 Figure 6d 0.1 Figure 6d 0.14 0.045 0.32

d (mm) 123 5.12 0.2 1.22 1.25 1.02

CV: Coeffi  cient of Variation (defi ned as the ratio of the standard deviation to the 
mean

Table 3: Sediment size article of the observation data in the study area.

Depth (m)  d10(um) d50(um) d90(um)

0 154.3 219.2 590.3

5 92.15 173.7 283.6

10 60.02 117.0 577.0
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According to the computer for the study area, the gross and 
the net LSTRs were obtained as shown in Table 5. The values 
of the statistical criteria for CERC, Walton and Bruno, and 
Kamphuis formulas are shown in Table 6. 

For the current study, the CERC formula used to be the most 
commonly applied expression in new models that contain more 
coastal parameters. It is recommended that the CERC formula 
is used in storm conditions where the wave heights overstep 
4 m [5]. But, in the Noor coastal region, pursuant to the wave 
climate studies, the mean wave height was 0.3 m. Thus, the 
CERC equation overestimates LSTRs obtained from Kamphuis, 
Walton and Bruno, and ANN by factors of 0.97, 1.1, and 0.98, 
respectively. It is recommended to use Kamphuis’s formula in 
low-wave energy conditions with breaker heights of less than 
1 m. The recommended value corresponds to the study area’s 
wave condition. Thus, Kamphuis’s equation overestimates 
LSTRs obtained from CERC, Walton and Bruno, and ANN by 
factors of 1.03, 1.14, and 1.01, respectively [2]. 

Application of ANN for prediction of LSTR

The data used in training the ANN model: Signifi cant 
parameters in more sediment transport formulas are alongshore 
current velocity (V), surf zone width (W), and breaking wave 
height (Hb). In this study, observed data, obtained from the 
streamer trap, was used. Measured V, W, Hb values were used 
as input data to the model and sediment transport rate (Qs) as 
an output of the model. Generally, 123 samples are used for 
training the model, and 87 samples and 18 instances of total 
measured data, accidentally selected, were used for validation 
and testing the model.

The alongshore transport rate is one of the most complex 
issues and many random variables affect its determination. 
This type of natural phenomenon is due to the conventional 
methods for estimating the rate of the parallel to the domain of 
change. In this research, the rate of sediment transport obtained 
from fi eld observations and the Artifi cial Neural Network 
(ANN) model were evaluated and compared. According to the 

results of comparing the sediment transport rate observed and 
predicted by the ANN, the coeffi cient of regression coeffi cient 
(R2), root mean square error (RMSE), and Coeffi cient of 
Effi ciency (CE) are 0.98, 0.02, 0.99, respectively, which 
indicates the effectiveness of the ANN model for estimation of 
sediment transport rate. The results confi rm the superiority 
of artifi cial neural networks in the estimation of the parallel 
sediment transport rate of the coast, and in comparison of 
two activation functions, have confi rmed the use of hyperbolic 
tangent function instead of sigmoid in predicting the sediment 
transport rate.

ANN model development: To select the foremost network 
for anticipation, various models are made by various nodes and 

Figure 6: Collected sediment transport data in the Noor coastal zone by streamer traps.

Table 4: The estimated value of sediment transport rates by the observation method.

Sediment transport rate Q [m3. (year)-1] Q [m3. (day)-1]

Values 326542.764 894.36

Table 5: The daily and yearly alongshore sediment transport rates estimated by 
different methods.

Formula Qs[m
3.(year)-1] Qs [m

3.(day)-1]

CERC [4] 350400 960

Kamphuis [2] 359890 986

Walton and Bruno [37] 315360 864

Table 6: Statistical comparison of the CERC, Walton and Bruno, and Kamphuis 
formulas.

Formula Type N RMSE R2 CE MAE MRE

CERC

Training 87 8.4 × 10-3 0.99 0.99 3.6 × 10-3 2.9
Validation 18 2.3 × 10-2 0.98 0.98 1.2 × 10-2 9.1

Testing 18 1.4 × 10-2 0.98 0.98 8.3 × 10-3 7.5

Walton and Bruno

Training 87 5.6 × 10-3 0.99 0.99 3.7 × 10-3 2.1
Validation 18 4.3 × 10-3 0.99 0.99 3.5 × 10-3 3.03

Testing 18 7 × 10-3 0.99 0.99 4.7 × 10-3 3.8

Kamphuis

Training 87 1.1 × 10-1 0.9 0.9 3.8 × 10-2 4.9
Validation 18 6.7 × 10-2 0.84 0.78 4.8 × 10-2 7.6

Testing 18 7.6 × 10-2 0.91 0.85 5.5 × 10-2 7.7
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medium layers. In the Learn Rate Control (LRC) feature, 0.001 
and 0.15 were used as the minimum and maximum extent 
for auto control of the learning rate. The input compounds 
to estimate total sediment load are: 1) H, W, and V,2) Hand 
ab; and 3) Hb, ab T, d50 and m. The fi rst combination includes 
breaking wave height, alongshore current velocity, and surf 
zone width. The formula of Walton and Bruno is mostly used 
for the calculation of sediment transport rate. The other two 
compounds contain parameters used by CERC and Kamphuis 
formulas. Since try-and-error tests, the best network found 
in this study is the one with three layers containing one input 
layer, one middle layer, and one output layer. The best model 
consists of three input nodes including Hb, W and V, 14 middle 
nodes, and an output node, which must have a sigmoid transfer 
function. The sigmoid function indicative with 1/ (1+e-x) sets 
the output single strength among 0 and 1. The correlation 
coeffi cient and RMSE of this model were 0.98 and 0.017 for 
the training data set and 0.96 and 0.015 for the test data set, 
respectively. The fi nal architecture of the ANN model is given 
in Table 7.

The ANN model (3-14-1), which was trained using three 
main parameters of sediment transport rate rules, provides 
some rather accurate results into other models with four 
inputs. The precision of the selected ANN model (3-14-1) in 
comparison with other models of three inputs, particularly 
those with more than one hidden layer, has an insignifi cant 
difference. According to the complexity and longer time needed 
for the training of models with more than one hidden layer, the 
selection of the ANN model (3-14-1) is sensible. The comparison 
of the measured data and predicted whole sediment load using 
ANN for training and testing procedures is shown in Figure 7.

The scatterplot of the observed and predicted sediment 
transport rate of the ANN (3-14-1) model, in the validation 
period, is given in Figure 8.

The daily statistical variables of the breaking wave height 
(Hb), wave period (T), breaking wave angle (ab), surf zone 
width (W), alongshore current (V), beach slope (m), grain size 
(d), sediment transport rate observation (Q0), and sediment 
transport rate prediction (QANN) are given in Table 8. In this 
table, Sx, CV and Csx denote the standard deviation, variation, 
and skewness coeffi cients, respectively.

Comparison of the results of ANN and sedi-
ment transport rate formulas 

123 sets of observed data with accurate wave properties, 
surf zone width, and alongshore current velocity data, not used 
in the training and validation of ANN in the prior section, were 
used to compare the results of the ANN model and sediment 
transport formulas. Field data including breaking wave height, 
wave period, breaking wave angle, surf zone width, alongshore 
current velocity, sediment particle size distribution, beach 
slope, and sediment transport rate, were measured by using a 
streamer trap.

In summary, the ANN model was trained using three 
signifi cant parameters Hb, W, and V which can be further used to 

predict sediment transport rate in Caspian Sea data. However, 
the precision of an ANN model is data sensitive, and must not 
be practical to the situations outside the data range used in 
training the ANN model, without confi rmation.

Figure 9 shows the predicted QS values compared with the 
observed QO values using CERC, Kamphuis, Walton and Bruno 
formulas, and the ANN method. The R2, RMSE, CE, MRE, and 
MAE statistical criteria were used to calculate the results of the 
different models (Table 9).

Table 7: properties of the extended ANN model (3-14-1).

Model 
input

Model 
output

ANN 
structure

Transfer 
function 
middle 
layer

Training set
Validation 

set
Test set

R2 RMSE R2 RMSE R2 RMSE

V, W, Hb

Sediment 
transport 

rate
(3, 14,1) Sigmoid 0.99 0.015 0.96 0.014 0.94 0.011

Figure 7: Comparison of observed and simulated sediment transport rate by the 
ANN (3-14-1).

Figure 8: The scatterplot of observed and predicted sediment transport rates by 
the ANN (3-14-1).

Table 8: Statistical characteristics of the wave and sediment data.

Parameter N Min Max Mean Sx CV Csx

Hb (m) 123 0.03 0.95 0.6 0.24 0.4 0.44

T(s) 123 1.9 7.4 3.8 1.02 0.27 1.33

αb(
0) 123 5 375 25 138.2 1.17 0.99

W(m) 123 30 170 84 31.6 0.38 0.67

V(m.s-1) 123 0.1 0.6 0.23 0.12 0.52 1.1

Beach slope 123 0.08 0.26 0.17 0.05 0.3 0.27

d(mm) 123 0.2 5.12 0.71 1.04 1.7 2.11

Q0[m
3.(day)-1] 123 12.67 1036.8 316.4 223.1 0.7 1.38

QANN[m3.(day)-1] 123 11.3 1020.3 312.5 227.3 0.73 1.34
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Comparing the errors of this study with the error rate in the 
results of several international studies in the same fi eld shows 
the accuracy of the results of this research. The results of some 
of these studies are as follows:

In Singh, et al. (2008) studies using a combination of 
network and nonlinear regression for the calculation of parallel 
shore transport rate, the coeffi cient of determination (R2), 
and the RMSE for data were 0.83 and 4.35 kg/s, respectively. 
Hashemi, et al. [19] at the Tormaduk coast of Ireland the 
seven-year period in 19 stations investigated the rate of the 
parallel sediment of the transport of the coast and compared 
the results with fi eld data. The geometrical attributes of beach, 
wind, wave climate, and beach changes were considered. RMSE 
error was 0.0007. Using the Kabiri-Samani, et al. [8] approach, 
the wavelength, fragility wave angle, beach slope, and grain 
size as input and the sediment transport rate as output in a 
neural network, the values of coeffi cient of determination (R2) 
and RMSE were obtained equal to 0.6 and 0.6, respectively. A 
comparison of the errors of this research with international 
investigations indicates the high accuracy of the investigation 
shown in Table 10.

Conclusion

In this research, the rate of sediment transport was predicted 
and calculated using semi-experimental formulas and artifi cial 
neural networks in the Caspian Sea off the coast of the city 
of Noor. For this purpose, regional data was utilized by fi eld 

observations (elevation, period, and angle), breakup surf zone 
width, grain size by sampling from Grab and determination of 
grain size in the laboratory by sieve shaker, velocity by using 
velocity meter and slope of the coast by using the mathematical 
formula of slope based on water depth and distance between 
the coastal lines, and the depth of scale of sediment The use of 
a trap has been measured and obtained.

Evaluating the accuracy of the empirical formulas and of the 
ANN was found to predict the rate of daily sediment transport. 
The LSTRs measured by the streamer sediment traps along 
the low-wave energy coast are lower than the rates estimated 
by the various empirical formulas. The generally used CERC 
formula, Kamphuis formula, and Walton and Bruno formula 
estimations were non-realistic high for the studied low-energy 
settings. The linear relationship between the energy fl ux factor 
and LSTR, included in the CERC formula, is supported by the 
streamer trap measurements. But, an order-of-extent lower 
empirical coeffi cient, 0.08 rather than 0.78, recommended by 
the Shore Protection Manual (1984), is proposed by the trap 
data for low-energy coast. Plus, studies on the comparability 
of the fi eld techniques are recommended. Relationships among 
the different key measurements (Table 4) need to be explored 
to further understand their compatibility. ANN model is used 
for estimating sediment transport rate in the sea, in this study. 
87 samples were used for training the ANN model and 36 
samples were used to validate the model. Inputs for training 
the model include breaking wave height (Hb), surf zone width 
(W), and alongshore current (V). The results showed that the 
artifi cial neural network alongshore sediment transport rate in 
the Noor coastal zone can be calculated. The statistical criteria 
R2, RMSE, MAE, CE, and MRE for the ANN model, take the 
values 0.96, 0.015, 1.7 × 10-4, 0.93, and 3.5 × 10-2, respectively.

To achieve better results and complete the research path, it 
is recommended that the next sampling time should increase 
the observational migration rate in the future; To predict the 
rate of sediment transport, other models such as time series, 
regression, wavelet, fuzzy-neural inference system, and fuzzy 
logic has been used and the results have been compared with 
the results of the neural network.
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